光学学报, 2016, 36 (12): 1224001, 网络出版: 2016-12-14   

基于同轴转臂的角分辨光谱测量系统

Angle Resolved Spectrometer Based on Coaxial Rotation Arms
作者单位
1 厦门大学航空航天学院, 福建 厦门 361000
2 厦门大学化学与化工学院固体物理表面化学国家重点实验室, 福建 厦门 361000
摘要
设计实现了基于同轴转臂的角分辨光谱测量系统, 适用于对表面等离激元结构进行角分辨镜面反射光谱表征。以激发转臂与收集转臂绕样品台表面回转实现定向入射与收集; 利用标准圆棒约束两转臂回转轴承同心, 并允许转臂与电动转盘径向相对移动以保证两转臂沿同轴转动, 进而确保角分辨光谱的角度信息准确; 利用反向传播神经网络算法对光栅分光光谱仪进行标定, 确保光谱信息准确。系统可分辨高度角范围为7.9°~89°, 最小角度分辨率为0.1°。通过该系统对金表面一维周期光栅、金表面二维周期纳米结构等样品在不同介质环境、不同高度角与不同方位角下进行镜面反射谱采集实验, 完成了对上述表面等离激元结构可靠的角分辨光谱表征。
Abstract
We established an angle-resolved spectral measurement system based on coaxial rotation arms to construct the optical characterization on plasmonic structures. Two arms slew around the sample stage surface to achieve directional stimulation and collection; and a standard rod through two slewing bearings was used as the constraint and allowed radial relative movement between the pivot arm and electric turntable, which ensured the coaxial rotation to get accurate angle information. The spectrophotometer was calibrated by back-propagation neural network algorithm to ensure accurate wavelength information of angle-resolved spectrum. This system had altitude angle from 7.9°to 89°, and the angular resolution is 0.1°. Experiments on one-dimensional periodic gold grating and two-dimensional periodic structure on gold film demonstrated the capacity of the system in angle-resolved spectroscopic characterization for plasmonic samples in different environment, at different altitude angles and different azimuth angles.
参考文献

[1] 王振林. 表面等离激元研究新进展[J]. 物理学进展, 2009, 29(3): 287-324.

    Wang Zhenlin. A review on research progress in surface plasmons[J]. Progress in Physics, 2009, 29(3): 287-324.

[2] 童廉明, 徐红星. 表面等离激元——机理、应用与展望[J]. 物理, 2012, 41(9): 582-588.

    Tong Lianming, Xu Hongxing. Surface plasmons—mechanisms, application and perspectives[J]. Physics, 2012, 41(9):582-588.

[3] Baumberg J J, Kelf T A, Sugawara Y, et al. Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals[J]. Nano Letters, 2005, 5(11): 2262-2267.

[4] Lin X M, Cui Y, Xu Y H, et al. Surface-enhanced Raman spectroscopy: substrate-related issues[J]. Analytical and Bioanalytical Chemistry, 2009, 394(7): 1729-1745.

[5] Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: review[J]. Sensors and Actuators B, 1999, 54(1-2): 3-15.

[6] Homola J, Koudela I, Yee S S. Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison[J]. Sensors and Actuators B, 1999, 54(1-2): 16-24.

[7] 曾 捷, 梁大开, 曾振武, 等. 反射式光纤表面等离子体波共振传感器研究特性研究[J]. 光学学报, 2007, 27(3): 404-409.

    Zeng Jie, Liang Dakai, Zeng Zhenwu, et al. Reflective optical fiber surface plasma wave resonance sensor[J]. Acta Optica Sinica, 2007, 27(3): 404-409.

[8] Meyer S A, Auguie B, Le Ru E C, et al. Combined SPR and SERS microscopy in the Kretschmann configuration[J]. Journal of Physical Chemistry A, 2012, 116(3): 1000-1007.

[9] Chu Y Z, Zhu W Q, Wang D X, et al. Beamed Raman: Directional excitation and emission enhancement in a plasmonic crystal double resonance SERS substrate[J]. Optics Express, 2011, 19(21): 20054-20068.

[10] Wang D X, Zhu W Q, Chu Y Z, et al. High directivity optical antenna substrates for surface enhanced Raman scattering[J]. Advanced Materials, 2011, 24(32): 4376-4380.

[11] Shegai T, Miljkovic′ V D, Bao K, et al. Unidirectional broadband light emission from supported plasmonic nanowires[J]. Nano Letters, 2011, 11(2): 706-711.

[12] Shegai T, Brian B, Miljkovic′ V D, et al. Angular distribution of surface enhanced Raman scattering from individual Au nanoparticle aggregates[J]. ACS Nano, 2011, 5(3): 2036-2041.

[13] Li H B, Xu S P, Liu Y, et al. Directional emission of surface-enhanced Raman scattering based on a planar-film plasmonic antenna[J]. Thin Solid Films, 2012, 520(18): 6001-6006.

[14] Dominguez D, Alhusain M, Alharbi N, et al. Fourier plane imaging microscopy for detection of plasmonic crystals with periods beyond the optical diffraction limit[J]. Plasmonics, 2015, 10(6): 1337-1344.

[15] Rodriguez R, Regan C J, Ruiz-Columbié A, et al. Study of plasmonic crystals using Fourier-plane images obtained with plasmon tomography far-field superlenses[J]. Journal of Applied Physics, 2011, 11(8): 083109.

[16] Zhang L, Dai Y Z, Lin C, et al. Wavelength calibration based on back propagation neural network[C]. International Conference on Anti-Counterfeiting, Security, and Identification, 2014: 7064972.

吕瑞琦, 王磊, 刘博文, 张良. 基于同轴转臂的角分辨光谱测量系统[J]. 光学学报, 2016, 36(12): 1224001. Lü Ruiqi, Wang Lei, Liu Bowen, Zhang Liang. Angle Resolved Spectrometer Based on Coaxial Rotation Arms[J]. Acta Optica Sinica, 2016, 36(12): 1224001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!