中国激光, 2005, 32 (12): 1614, 网络出版: 2006-06-01   

利用块状介质进行飞秒强激光脉冲的腔外压缩

AExtracavity Femtosecond High Intensity Laser Pulse Compression by Bulk Media
作者单位
1 中国科学院上海光学精密机械研究所,上海 201800
2 中国科学院研究生院,北京 100039
摘要
高强度飞秒激光脉冲的腔外压缩是获得高次谐波阿秒脉冲驱动源的必要手段。实验研究了超强超短飞秒激光脉冲在经过块状介质后的光谱展宽和色散补偿压缩现象。单脉冲能量0.26 mJ,脉宽50 fs的激光脉冲经透镜在空气中聚焦后再入射到块状材料上,出射脉冲光谱被展宽到接近40 nm。由于在块状材料中的自聚焦效应,出射光束质量变好并保持较小的空间啁啾。利用熔融石英棱镜对补偿带有正色散的出射脉冲,最后得到>0.1 mJ,19 fs的压缩脉冲。利用SPIDER装置测量了出射脉冲的脉宽和光谱相位。整个系统的能量效率大约为35%,压缩后的激光脉冲具有很好的空间分布和平滑的时域包络。实验结果实现了利用块状材料对飞秒激光脉冲的腔外压缩,这种方法将适用于对更高能量飞秒脉冲的压缩。
Abstract
Extracavity femtosecond laser pulse compression is an indispensable method to obtain the driver for attosecond extreme ultraviolet (XUV) pulse by high harmonic generation. The pulse spectrum broadening and dispersion compensation compression phenomenon when focusing the laser pulse into bulk media are experimentally investigated. The 0.26 mJ, 50 fs laser pulse is focused into the bulk media, and the output spectrum width is broadened to nearly 40 nm. The beam maintains good quality and the spatial chirp of the laser beam is low because of the self-focusing phenomenon during the transmission in the bulk media. After compensating the positive chirp by the fussed silica prism pair, the pulse duration is compressed to 19 fs and the pulse energy is >0.1mJ with an efficiency of 35%. The pulse duration and the spectral phase are measured by SPIDER. The compressed laser pulse has quite good spatial profile and high contrast. The extracavity compression of high intensity femtosecond laser pulses has been carried out by use of bulk media, this method will be useful in the compression experiment on higher energy femtosecond laser pulse.
参考文献

[1] . Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950): 831-838.

[2] . Morgner, F. X. Kartner, S. H. Cho et al.. Sub-two-cycle pulses from a Kerr-lens mode-locked Ti∶sapphire laser[J]. Opt. Lett., 1999, 24(6): 411-413.

[3] . Aoyama, K. Yamakawa, Y. Akahane et al.. 0.85-PW, 33-fs Ti∶sapphire laser[J]. Opt. Lett., 2003, 28(17): 1594-1596.

[4] . Intense few-cycle laser fields: Frontiers of nonlinear optics[J]. Rev. Mod. Phys., 2000, 72(2): 545-591.

[5] . Gibson, Ariel Paul, Nick Wagner et al.. Coherent soft X-ray generation in the water window with quasi-phase matching[J]. Science, 2003, 302(5642): 95-98.

[6] Chen Jing, Xu Zhizhan, Zeng Zhinan. High-order harmonics generation from multi-atom molecular ion in an ultra-short laser field [J]. Acta Optica Sinica, 2003, 23(1):1~5
陈静,徐至展,曾志男. 一维多原子分子离子与超短激光场作用产生的高次谐波[J]. 光学学报, 2003, 23(1):1~5

[7] . G. R. Geddes, Cs. Toth, J. van Tilborg et al.. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding[J]. Nature, 2004, 431(7008): 538-541.

[8] . Ditmire, J. Zweiback, V. P. Yanovsky et al.. Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters[J]. Nature, 1999, 398(6727): 489-492.

[9] Xia Yong, Liu Jiansheng, Ni Guoquan et al.. 3-D simulation on Coulumb explosions of hydrogen atomic clusters irradiated by an intense femtosecond laser pulse[J]. Chinese J. Lasers, 2004, 31(8):922~926
夏勇,刘建胜,倪国权 等. 飞秒强激光脉冲与H原子团簇相互作用的库仑爆炸过程模拟[J]. 中国激光, 2004, 31(8):922~926

[10] . D. Potter, J. L. Herek, S. Pedersen et al.. Femtosecond laser control of a chemical reaction[J]. Nature, 1992, 355(6355): 66-68.

[11] . . The femtosecond blade: Applications in corneal surgery[J]. Optics and Photonics News, 2002, 13: 24-29.

[12] . Hentschel, R. Klenberger, Ch. Spielmann et al.. Attosecond metrology[J]. Nature, 2001, 414(6863): 509-513.

[13] Govind P. Agrawal. Nonlinear Fiber Optics [M]. Beijing: Publishing House of Electronics Industry, 1995
Govind P. Agrawal. 非线性光纤光学[M]. 北京: 电子工业出版社, 1995

[14] . Nikolaus, D. Grischkowsky. 90-fs tunable optical pulses obtained by two-stage pulse compression[J]. Appl. Phys. Lett., 1983, 43(3): 228-230.

[15] . Nisoli, S. Stagira, S. De. Silvestri et al.. A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses[J]. Appl. Phys. B, 1997, 65(2): 189-196.

[16] . B. Corkum. Compression of high-power optical pulses[J]. J. Opt. Soc. Am. B, 1988, 5(3): 641-647.

[17] . Mevel, O. Tcherbakoff, F. Salin et al.. Extracavity compression technique for high-energy femtosecond pulses[J]. J. Opt. Soc. Am. B, 2003, 20(1): 105-108.

[18] . Iaconis, I. A. Walmsley. Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses[J]. Opt. Lett., 1998, 23(10): 792-794.

[19] . Akzbek, M. Scalora, C. M. Bowden et al.. White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air[J]. Opt. Commun., 2001, 191: 353-362.

[20] . G. Koprinkov, Akira Suda, Pengqian Wang et al.. Self-compression of high-intensity femtosecond optical pulses and spatiotemporal soliton generation[J]. Phys. Rev. Lett., 2000, 84(17): 3847-3850.

[21] . Durfee III, Margaret M. Murnane et al.. High power ultrafast lasers[J]. Rev. Sci. Instrum., 1998, 69(3): 1207-1223.

[22] Robert W. Boyd. Nonlinear Optics [M]. Boston: Academic Press, INC., 1992

[23] . Brodeur, S. L. Chin. Band-gap dependence of the ultrafast white-light continuum[J]. Phys. Rev. Lett., 1998, 80(20): 4406-4409.

[24] . Ranka, Robert W. Schirmer, Alexander L. Gaeta. Observation of pulse splitting in nonlinear dispersive media[J]. Phys. Rev. Lett., 1996, 77(18): 3783-3786.

[25] Rick Trebino. Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses [M]. Boston: Kluwer Academic Publishers, 2002

朱毅, 陈晓伟, 冷雨欣, 刘军, 林礼煌, 李儒新, 徐至展. 利用块状介质进行飞秒强激光脉冲的腔外压缩[J]. 中国激光, 2005, 32(12): 1614. 朱毅, 陈晓伟, 冷雨欣, 刘军, 林礼煌, 李儒新, 徐至展. AExtracavity Femtosecond High Intensity Laser Pulse Compression by Bulk Media[J]. Chinese Journal of Lasers, 2005, 32(12): 1614.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!