激光与光电子学进展, 2014, 51 (9): 090001, 网络出版: 2014-08-20   

气动光学自适应校正研究进展 下载: 550次

Research Advances in Aero-Optics Adaptive Correction
作者单位
国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
摘要
自1982 年Gilbert 明确提出气动光学问题以来的理论和实践研究表明:气动光学畸变已严重影响机载/弹载激光能量系统及激光信息系统的性能。但是,由于气动光学畸变的高时间、高空间频率特征,现有的反馈控制自适应光学系统控制带宽尚不能满足高频气动光学波前畸变实时校正对系统带宽的需求。通过梳理近30 多年来人们致力于气动光学自适应校正所做的机理、测量、校正等方面的标志性研究工作,以明确气动光学研究的问题、现状及未来的研究思路,从而为广大气动光学研究者提供理论和技术参考。
Abstract
Since the problem of aero-optics is raised by Gilbert in 1982, the studies of theoretical and experimental indicate: the performance of airborne/missileborne laser energy system and laser information system is seriously reduced by aero-optical aberration. However, the limited bandwidth of feedback control adaptive optics system is not satisfied with the requirement of the high frequency aero-optical aberration realtime correction. Milestone works such as aero-optical mechanism, measurement and correction are reviewed. The objective of the paper is providing the theoretical and technical references for the aero-optical researchers.
参考文献

[1] Jumper E J, Fitzgerald E J. Recent advances in aero-optics[C]. Progress in Aerospace Sciences, Pergamon: 2001, 37(3): 299-339.

[2] Jumper E J. Recent advances in the measurement and analysis of dynamic aero-optic interactions (Review Paper)[R]. 28th Plasmadynamics and Lasers Conference, 1997, 2350: 1-25.

[3] Goorskey D J, Whiteley M R, Gordeyev S, et al.. Recent AAOL in-flight wavefront measurements of aero-optics and implications for aero-optics beam control in tactical laser weapon systems[C]. 42nd AIAA Plasmadynamics and Lasers Conference , 2011, 3282: 1-27.

[4] Gordeyev S, Jumper E, Hayden T. Aero-optics of supersonic boundary layer[C]. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2011, 1325: 1-13.

[5] Bury M, Doyle K, Sebastian T, et al.. An integrated method for aero-optical analysis[C]. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013, 286: 1-15.

[6] 殷兴良. 气动光学原理[M]. 北京: 中国宇航出版社, 2003. 301.

    Yin Xingliang. Principle of Aero Optics[M]. Beijing: China Astronautic Publishing House, 2003. 301.

[7] Gilbert K G. KC-135 aero-optical turbulent boundary/shear-layer experiments[C]. Aero-Optical Phenomenon, 1982. 312.

[8] Hugo E J, Jumper E J. Applicability of aero-optic linking equation to a highly coherent, transitional shear layer[J]. Appl Opt, 2000, 39(24): 4392-4401.

[9] America Defense Advanced Research Agency. Fiscal year 2013 project arrangement, 2013.

[10] Rennie R M, Goorskey D, Whiteley M R, et al.. Wavefront measurements of a laser-induced breakdown spark in still air [J]. Appl Opt, 2012, 51(13): 2306-2314.

[11] Morgan P E, Visbal M R. Effectiveness of flow control for a submerged hemispherical flat-window turret[R]. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013, 1015: 1-25.

[12] Adam E Smith A E, Gordeyev S. Evaluation of passive boundary layer flow control methods for aero-optic mitigation [R]. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Expostition, 2013, 718: 1-13.

[13] Porter C, Gordeyev S, Zenk M, et al.. Flight measurements of the aero-optical environment around a flat-windowed turret[J]. AIAA Journal, 2013, 51(6): 1394-1403.

[14] Lucca1 N D, Gordeyev S, Jumper E. The improvement of the aero-optical environment of a hemisphere-on-cylinder turret using vortex generators[R]. 44th AIAA Plasmadynamics and Lasers Conference, 2013, 3132: 1-16.

[15] White M D, Visbaly M R. Computational investigation of wall cooling and suction on the aberrating structures in a transonic boundary layer[R]. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013, 720: 1-29.

[16] Duffin D, Gordeyev S, Jumper E. Visualizing index-of-refraction variations in optically active flow fields[C]. 11th international symposium of flow visualization, University of N.D. Indianna, USA, 2004. 1-11.

[17] Siegenthaler J P, Jumper E J, Gordeyev S. Atmospheric propagation vs. aero-optics[R]. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2008, 1076: 1-6.

[18] Dimotakis P E, Catrakis H J, Fourguette D C. Flow structure and optical beam propagation in high-reynolds-number gas-phase shear layers and jet[J]. J Fluid Mech, 2001, 433: 105-134.

[19] Gebhardt F G. Twenty-five years of thermal blooming: an overview[C]. SPIE, 1990, 1221: 2-25.

[20] Yu M H, Monkewitz. P A. Oscillations in the near field of a heated two-dimensional jet[J]. J Fluid Mech, 1993, 225: 323-347.

[21] Michnael J S, Neeraj S, John M S, et al.. High frequency flow control-suppression of aero-optics in tactical directed energy beam propagation and the birth of a new model(part I)[C]. 33rd AIAA Plasmadynamics and Lasers Conference, 2002, 2272: 2-3.

[22] Tyson R K. Principles of Adaptive Optics[M]. Academic Press. New York, 1998. 72.

[23] Duffin D A, Jumper E J. Feed-forward adaptive-optic correction of aero-optical aberrations caused by a twodimensional heated jet[C]. 36th AIAA Plasmadynamics and Lasers Conference, 2005, 4776: 11.

[24] Abado S, Gordeyev S, Jumper E J. Two-dimensional high-bandwidth shack-hartmann wavefront sensor: design guidelines and evaluation testing[J]. Opt Engng, 2010, 49(6): 064403.

[25] Liepmann H W. Deflection and diffusion of a light ray passing through a boundary layer [C]. Douglas aircraft company, Santa Monica Division. Santa Monica, California, 1952.

[26] Stine H A, Winovich W. Light diffusion through high-speed turbulent boundary layer[C]. research memorandum A56B21. Narronal Advisory Committe for Aeronautics, Washington, 1952.

[27] Sutton G W. Effects of turbulent fluctuations in an optically active fluid medium[J]. AIAA Journal, 1969, 7(9): 1737-1743.

[28] Trollinger J D. Aero-optical characterization of aircraft optical turrets by holography interferometry and shadowgraph [C]. Aero-Optical Phenomena, 1982, 80: 2-6.

[29] Kelsall D. Rapid interferometric technique for MTF measurements in visible or infrared region[J]. Appl Opt, 1973, 12(7): 1398-1399.

[30] Hugo E J, Jumper E J. Applicability of the aero-optic linking equation to a highly coherent, transitional shear layer[J]. Appl Opt, 2000, 39(24): 4392-4401.

[31] Gilbert K G, Otten L J. Aero-optical phenomena[C]. Progress in Astronautics and Aeronautics series, New York: American Institute of and Aeronautics Astronautics, 1982. 3-17.

[32] Mallry M M, Sutton G W, Kincheloe N. Beam-jitter measurements of turbulent aero-optical path differences[J]. Appl Opt, 1992, 31(32): 4440-4443.

[33] Neichel B, Conan J M, Fusco T, et al.. ELTs Adaptive optics for multi-objects 3D spectroscopy: key parameters and design rules[C]. SPIE, 2006, 6272: 62721X.

[34] Cuby J G, Morrisb S, Philip P B, et al.. EAGLE: an MOAO fed multi-IFU working in the NIR on the E-ELT[C]. SPIE, 2009. 7439: 74390J.

[35] Gordeyev S, Duffin D, Jumper E. Aero-optical measurements using malley probe and high-bandwidth 2-D wavefront sensors[C]. International conference on advanced optical diagnostics in fluid, solid and combustion. Tokyo, Japan, 2004. 2.

[36] Jumper E J. Hugo R J. Optical phase distortion due to turbulent-fluid density field: quantification using the smallaperture beam technique[C]. 23rd AIAA Plasmadynamics and Lasers Conference, 1992, 3020: 2-5.

[37] Hugo R J, Jumper E J. Experimental measurement of a time-varying optical path difference by the small-aperture beam technique[J]. Appl Opt,1996,35(22):4439-4440

[38] 谢文科, 姜宗福. 基于多对流速度的波前重构算法研究[J]. 强激光与粒子束, 2006, 18(1): 989-992.

    Xie Wenke, Jiang Zongfu. Wavefront reconstruction arithmetic based on multi-convection velocity[J]. High Power Laser and Particle Beams, 2006, 18(1): 989-992.

[39] Hugo R J, Jumper E J. Time-resolved wave front measurements through a compressible free shear layer[J]. AIAA Journal, 1997, 35(4): 672-673.

[40] Neal D R, O′Hern T J, Torczynski J R, et al.. Wavefront sensors for optical diagnostics in fluid mechanics: application to heated flow, turbulence and droplet evaporation[C]. SPIE, 1993, 2005, 2005: 194-203.

[41] Brian Thurow, Mo Samimy, Walter Lepert. Simultaneous high-resolution optical wavefront and flow diagnostics for high-speed flow[C]. 34th AIAA Plasmadynamics and Lasers Conference, 2003, 3613: 1-3.

[42] Thurow B, Samimy M, Lempert W. Simultaneous MHz rate visualization and wavefront sensing for aero-optics[R]. 41st Aerospace Sciences Meeting and Exhibit, 2003, 684: 1-2.

[43] Gordeyev S, Duffin D, Jumper E. Aero-optical measurements using malley probe and high-bandwidth 2-D wavefront sensors[C]. International conference on advanced optical diagnostics in fluid, solid and combustion, Toyota, Japan: 2004. 1-5.

[44] Fitzgerald E J, Jumper E J. Two dimensional optical wavefront measurements using a small-aperture beam technique derivative instrument[C]. Opt Engng, 2000, 39(12): 3285-3293.

[45] 邱翔, 刘宇陆. 湍流的相干结构[J]. 自然杂志, 2004, 26(4): 187-188.

    Qiu Xiang, Liu Yulu. Turbulent coherent structure[J]. Chinese Journal of Nature, 2004, 26(4): 187-188.

[46] Brown G L, Roshko A. On density effects and large structure in turbulent mixing layer[J]. J Fluid Mechanics, 1974, 64(4): 775-816.

[47] 林建忠. 湍流的拟序结构[M]. 北京: 机械工业出版社, 1995. 1-10.

    Lin Jianzhong. Coherent Structure of Turbulence[M]. Beijing: China Machine Press, 1995. 1-10.

[48] 冯宾春, 崔桂香, 张兆顺. 充分发展圆管湍流的实验研究[J]. 力学学报, 2002, 32(2): 156-166.

    Feng Bingchun, Cui Guixiang, Zhang Zhaoshun. Eeperimental study of fully developed turbulent pipe flow[J]. Acta Mechanica Scinca, 2002, 32(2): 156-166.

[49] Kurimoto N, Suzuki Y, Kasagi N. Active control of coaxial jet mixing and combustion with arrayed micro actuators[J]. Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, 2001. 511-516.

[50] 易仕和, 何霖, 赵玉新, 等. 基于NPLS 技术的超声速混合层流动控制实验研究[J]. 中国科学G 辑, 2009, 39(11): 1640-1645.

    Yi Shihe, He Lin, Zhao Yuxin, et al.. A flow control study of a supersonic mixing layer via NPLS[J]. Sci China Ser G, 2009, 39(11): 1640-1645.

[51] Lumley J L. The Coherent Structure in Turbulence in Transition and Turbulence[M]. Meyer R E, Academic Press, 215-242.

[52] Yu M H, Monkewitz P A. Oscillations in the near field of a heated two-dimensional jet[J]. J Fluid Mechanics, 1993, 255: 323-347.

[53] 谢文科, 姜宗福, 许晓军, 等. 自由热射流流场的光学不均匀性数值研究[J]. 强激光与粒子束, 2004, 16(8): 989-992.

    Xie Wenke, Jiang Zongfu, Xu Xiaojun, et al.. Numerical study of the optical inhomogeneity of free heated jet flowfield [J]. High Power Laser and Particle Beams, 2004, 16(8): 989-992.

[54] 汪健生, 王晨健, 李汛. 湍流相干结构的速度和温度特性[J]. 实验力学, 2002, 17(2): 242-244.

    Wang Jiansheng, Wang Chenjian, Li Xun. The velocity and temperature properties of coherent structure in turbulence [J]. Journal of Experimental Mechanics, 2002, 17(2): 242-244.

[55] 李万平, 许正, 赵伟. 湍流多尺度相干结构间歇性的PIV 实验研究[J]. 华中科技大学学报, 2007, 35(12): 76-78.

    Li Wanping, Xu Zheng, Zhao Wei. PIV experimental investigation of multi-scale coherent structure intermittency in turbulent flow[J]. J Huazhong University of Sci & Tech (Nature Science Edition), 2007, 35(12): 76-78.

[56] 林建忠, 吴法理, 倪利明. 流场拟序结构的三维小波分析算法[J]. 浙江大学学报, 2006, 36(2): 156-158.

    Lin Jianzhong, Wu Fali, Ni Limin. Three-dimensional wavelet analysis for coherent structures in flow field[J]. Journal of Zhenjiang university (Engineering Science), 2006, 36(2): 156-158.

[57] Holmes P, Lumley J L, Berkooz G. Turbulence Coherent Structures, Dynamical Systems and Symmetry[M]. Cambridge: Cambridge University Press, 1996. 253.

[58] 谢文科, 姜宗福. 气动光学畸变波前的本征正交分解及低阶近似[J]. 中国激光, 2007, 34(4): 491-495.

    Xie Wenke, Jiang Zongfu. Proper orthogonal decomposition and low dimensional approximation of aero-optical aberration wavefronts[J]. Chinses J Laser, 2007, 34(4): 491-495.

[59] Gordeyev S V, Thomas F O. A temporal proper orthogonal decomposition (TPOD) method for closed-loop flow control [C]. 48th AIAA Aerospace sciences meeting and exhibit, Orlando FL, 2010, 359: 1-3.

[60] Sutton G W. Effect of turbulent fluctuation in an optically active fluid medium[J]. AIAA Journal, 1969, 7(9): 1737-1743.

[61] Vu, B T, Sutton G W Theophanis G, et al.. Laser-beam degradation through optically turbulent mixing layers[C]. 13th Fluid and PlasmaDynamics Conference, 1980. 1414.

[62] Chew L, Christiansent W. Coherent structure effects on the optical performance of plane shear layer[J]. AIAA Journal, 1991, 29(1): 76-80.

[63] Dimotaksi P, Catrakis H, Fourguette D. Flow structure and optical beam propagation in high-reynolds-number gasphase shear layers and jets[J]. J Fluid Mech, 2001, 433: 105-143.

[64] Wissler J B, Roshko A. Transmission of thin light beams through turbulent mixing layers[C]. 30th Aerospace Sciences Meeting and Exhibit, 1992, 658: 1-26.

[65] Garry L Broun, Anatol Roshlco. On density effects and large structure in turbulent mixing layers[J]. J Fluid Mech, 1974, 64(4): 775-816.

[66] Tsai Y P, Christiansen W H. Two-dimensional numerical simulation of shear-layer optics[J]. AIAA Journal, 1990, 28(12): 2092-2097.

[67] Debiasi M, Samimy M. An experimental study of the cavity for closed flow control[C]. 33rd AIAA Fluid Dynamics Conference and Exhibit, 2003, 4003: 1-2.

[68] Cattafesta L N, Williams D R, Rowley C W, et al.. Active control of flow-induced cavity resonance[C]. 28th Fluid Dynamics Conference, 2003, 3567: 1-3.

[69] Gordeyev S, Jumper E J. The optical environment of a cylindrical turret with a flat window and the impact of passive control devices[C]. 36th AIAA Plasmadynamics and Laser Conference, Toronto, Canada, 2005, 4657: 3-10.

[70] Gordeyev S, Jumper E, Ng T, et al.. Optical disturbances caused by transonic separated boundary layer behind a 20-degree ramp: physics and control[R]. 42nd AIAA Aeroscience Meeting and Exhibit, Reno, Nevada, 2004: 2-5.

[71] Schaeffler N W, Hepner T E, Jone G S, et al.. Overview of active flow control actuator development at NASA langley research center[R]. 1st Flow Control Conference, 2002. 3159.

[72] Meganathan A J, Vakili A D. An experimental study of open cavity flows at low subsonic speeds[R]. 40th AIAA Aerospace Sciences Meeting & Exhibit, 2002, 280: 1-2.

[73] Roberts F A, Roshko A. Effects of periodic forcing on mixing in turbulent shear layer and wake[R]. Shear Flow Control Conference, 1985, 570: 2-7.

[74] 谢文科. 气动光学畸变波前测量及控制方法[D]. 长沙: 国防科学技术大学, 2007. 87-89.

    Xie Wenke. Aero Optical Aberration Wavefront Measurement and Control Methods[D]. Changsha: Graduate School of National University of Defense Technology, 2007. 87-89.

[75] Kegerise M A, Cattafesta L N, Ha C. Adaptive identification and control of flow induced cavity oscillation[R]. 1st Flow Control Conference, 2000, 3158: 1-5.

[76] Cain A B, Rubio A D, Borta D M, et al.. Optimizing control of open bay acoustics[R]. 6th Aeroacoustics Conference and Exhibit, 2000-1928: 2.

[77] Williams D R, Fabris D, Iwanski K, et al.. Closed-loop control in cavities with unsteady bleed forcing[R]. 38th Aerospace Sciences Meeting and Exhibit, 2000, 470: 1.

[78] Seidel J, Siegel S, McLaughlin T. Feedback flow control of a shear layer for aero-optic applications[R]. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010, 356: 1-3.

[79] Caraballo E, Yuan X, Little J, et al.. Feedback control of cavity flow using experimental based reduced order model[R]. 35th AIAA Fluid Dynamics Conference and Exhibit, 2005, 5269: 1-9.

[80] Nightingale A M, Goodwine B, Lemmon M, et al..“Feedforward”adaptive-optic system identification analysis for mitigating aero-optic disturbances[R]. 38th Plasmadynamics and Lasers Conference, 2007, 4013: 2-9.

[81] Vukasinovic B, Glezer A. Flow control for turret aero-optics applications[R]. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013, 1014: 2-6.

[82] Wiltse J M, Glezer A. Direct excitation of small-scale motions in free shear flows[J]. Phys Fluids, 1998, 10(8): 2026-2036.

[83] Thomas F O, Corke T C, Iqbal M, et al.. Optimization of dielectric barrier discharge plasma actuators for active aerodynamic flow control[J]. AIAA Journal, 2009, 47(9): 2169-2178.

[84] Stanek M J, Raman G, Kibens V, et al.. Suppression of cavity resonance using high frequency forcing-the characteristic of effective devices[J]. 7th AIAA/CEAS Aeroacoustics Conference and Exhibit, 2001, 2128: 1-9.

[85] 孟磊, 李新阳, 姜文汉. 自适应光学系统中实时自适应控制的仿真研究[J]. 光电工程, 2001, 28(6): 1-6.

    Meng Lei, Li Xinyang, Jiang Wenhan. Simulation research on real · time adaptive control of an adaptive optical system [J]. Opto-Electronic Engineering, 2001, 28(6): 1-6.

[86] 李新阳, 凌宁, 陈东红, 等. 自适应光学系统中高速倾斜反射镜的稳定控制[J]. 强激光与粒子束, 1999, 11(1): 31-36.

    Li Xinyang, Ling Ning, Chen Donghong, et al.. Stable control of the fast steering mirror in adaptive optical system[J]. High Power Laser and Particle Beams, 1999, 11(1): 31-36.

[87] 王慎, 曹根瑞. 自适应光学系统时域特性分析[J]. 光学技术, 2001, 27(1): 19-20.

    Wang Shen, Cao Genrui. Time domain characteristics analysis of adaptive optics system[J]. Optical Technique, 2001, 27(1): 19-20.

[88] Hugo R J, Jumper E J. Applicability of aero-optic linking equation to a highly coherent, transitional shear layer[J]. Appl Opt, 2000, 24(20): 4392-4401.

[89] Cicchiello J M, Fitzgerald E J, Jumper E J. Far-field implication of laser transmission through a compressible shear layer[J]. Appl Opt, 1997, 36(25): 6447-6448.

[90] Ravindraan S S. Reduced-order adaptive controllers for fluids using proper orthogonal decomposition[C]. 39th Aerospace Sciences Meeting and Exhibit, 2001, 925: 2-8.

谢文科, 马浩统, 高穹, 江文杰. 气动光学自适应校正研究进展[J]. 激光与光电子学进展, 2014, 51(9): 090001. Xie Wenke, Ma Haotong, Gao Qiong, Jiang Wenjie. Research Advances in Aero-Optics Adaptive Correction[J]. Laser & Optoelectronics Progress, 2014, 51(9): 090001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!