中国激光, 2017, 44 (10): 1004001, 网络出版: 2017-10-18   

用于零场核磁共振探测的无自旋交换弛豫原子磁力仪 下载: 1452次

Spin-Exchange Relaxation Free Atomic Magnetometer for Zero-Field Nuclear Magnetic Resonance Detection
作者单位
1 中国科学技术大学近代物理系 中国科学院微观磁共振重点实验室, 安徽 合肥 230026
2 中国科学技术大学量子信息与量子科技前沿协同创新中心, 安徽 合肥 230026
引用该论文

陈伯韬, 江敏, 季云兰, 边纪, 徐文杰, 张晗, 彭新华. 用于零场核磁共振探测的无自旋交换弛豫原子磁力仪[J]. 中国激光, 2017, 44(10): 1004001.

Chen Botao, Jiang Min, Ji Yunlan, Bian Ji, Xu Wenjie, Zhang Han, Peng Xinhu. Spin-Exchange Relaxation Free Atomic Magnetometer for Zero-Field Nuclear Magnetic Resonance Detection[J]. Chinese Journal of Lasers, 2017, 44(10): 1004001.

参考文献

[1] Bloom A L. Principles of operation of the rubidium vapor magnetometer[J]. Applied Optics, 1962, 1(1): 61-68.

[2] Dupont-Roc J, Haroche S, Cohen-Tannoudji C. Detection of very weak magnetic fields (10-9 gauss) by 87Rb zero-field level crossing resonances [J]. Physics Letters A, 1969, 28(9): 638-639.

[3] Budker D, Romalis M. Optical magnetometry[J]. Nature Physics, 2007, 3(4): 227-234.

[4] Savukov I M, Seltzer S J, Romalis M V, et al. Tunable atomic magnetometer for detection of radio-frequency magnetic fields[J]. Physical Review Letters, 2005, 95(6): 063004.

[5] Budker D, Kimball D F, Rochester S M. et al. Sensitive magnetometry based on nonlinear magneto-optical rotation[J]. Physical Review A, 2000, 62(4): 043403.

[6] Smullin S J, Savukov I M, Vasilakis G, et al. Low-noise high-density alkali-metal scalar magnetometer[J]. Physical Review A, 2009, 80(3): 033420.

[7] Sheng D, Li S, Dural N, et al. Subfemtotesla scalar atomic magnetometry using multipass cells[J]. Physical Review Letters, 2013, 110(16): 160802.

[8] Allred J C, Lyman R N, Kornack T W, et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation[J]. Physical Review Letters, 2002, 89(13): 130801.

[9] Kominis I K, Kornack T W, Allred J C, et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 2003, 422(6932): 596-599.

[10] Happer W, Tang H. Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors[J]. Physical Review Letters, 1973, 31(5): 273-276.

[11] Happer W, Tam A C. Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors[J]. Physical Review A, 1977, 16(5): 1877-1891.

[12] Romalis M V, Savukov I M. Effects of spin-exchange collisions in a high-density alkali-metal vapor in low magnetic fields[J]. Physical Review A, 2005, 71(2): 023405.

[13] Dang H B, Maloof A C, Romalis M V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Applied Physics Letters, 2010, 97(15): 151110.

[14] Drung D, Abmann C, Beyer J. et al. Highly sensitive and easy-to-use SQUID sensors[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 699-704.

[15] Brown J M, Smullin S J, Kornack T W, et al. New limit on Lorentz-and CPT-violating neutron spin interactions[J]. Physical Review Letters, 2010, 105(15): 151604.

[16] Kornack T W, Ghosh R K, Romalis M V. Nuclear spin gyroscope based on an atomic comagnetometer[J]. Physical Review Letters, 2005, 95(23): 230801.

[17] Wyllie R, Kauer M, Wakai R T, et al. Optical magnetometer array for fetal magnetocardiography[J]. Optics Letters, 2012, 37(12): 2247-2249.

[18] Sander T H, Preusser J, Mhaskar R, et al. Magnetoencephalography with a chip-scale atomic magnetometer[J]. Biomedical Optics Express, 2012, 3(5): 981-990.

[19] Savukov I M, Romalis M V. NMR detection with an atomic magnetometer[J]. Physical Review Letters, 2005, 94(12): 123001.

[20] Ledbetter M P, Crawford C W, Pines A, et al. Optical detection of NMR J-spectra at zero magnetic field[J]. Journal of Magnetic Resonance, 2009, 199(1): 25-29.

[21] 李曙光, 周翔, 曹晓超, 等. 全光学高灵敏度铷原子磁力仪的研究[J]. 物理学报, 2010, 59(2): 877-882.

    Li Shuguang, Zhou Xiang, Cao Xiaochao, et al. All-optical high sensitive atomic magnetometer[J]. Acta Physica Sinica, 2010, 59(2): 877-882.

[22] 王丰, 刘强, 曾宪金, 等. Cs原子磁力仪共振谱线宽度的研究[J]. 光电子·激光, 2010, 21(6): 845-847.

    Wang Feng, Liu Qiang, Zeng Xianjin, et al. Study of resonance curve width in Cs vapor magnetometer[J]. Journal of Optoelectronics·Laser, 2010, 21(6): 845-847.

[23] 丁志超, 李莹颖, 汪之国, 等. 基于法拉第旋转检测的铷原子磁力仪研究[J]. 中国激光, 2015, 42(4): 0408003.

    Ding Zhichao, Li Yingying, Wang Zhiguo, et al. Research of rubidium atomic magnetometer based on Faraday rotation detection[J]. Chines J Lasers, 2015, 42(4): 0408003.

[24] Fang J, Wang T, Zhang H, et al. Optimizations of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping[J]. Review of Scientific Instruments, 2014, 85(12): 123104.

[25] Fu J Q, Du P C, Zhou Q, et al. Spin dynamics of the potassium magnetometer in spin-exchange relaxation free regime[J]. Chinese Physics B, 2016, 25(1): 010302.

[26] Weitekamp D P, Bielecki A, Zax D, et al. Zero-field nuclear magnetic resonance[J]. Physical Review Letters, 1983, 50(22): 1807-1810.

[27] McDermott R, Trabesinger A H, Mück M, et al. . Liquid-state NMR and scalar couplings in microtesla magnetic fields[J]. Science, 2002, 295(5563): 2247-2249.

[28] Appelt S, Kühn H, Häsing F W, et al. Chemical analysis by ultrahigh-resolution nuclear magnetic resonance in the Earth's magnetic field[J]. Nature Physics, 2006, 2(2): 105-109.

[29] Blanchard J W, Ledbetter M P, Theis T, et al. High-resolution zero-field NMR J-spectroscopy of aromatic compounds[J]. Journal of the American Chemical Society, 2013, 135(9): 3607-3612.

[30] Ledbetter M P, Pustelny S, Budker D, et al. Liquid-state nuclear spin comagnetometers[J]. Physical Review Letters, 2012, 108(24): 243001.

[31] Luo Z H, Lei C, Li J, et al. Experimental observation of topological transitions in interacting multispin systems[J]. Physical Review A, 2016, 93(5): 052116.

[32] Emondts M, Ledbetter M P, Pustelny S, et al. Long-lived heteronuclear spin-singlet states in liquids at a zero magnetic field[J]. Physical Review Letters, 2014, 112(7): 077601.

[33] Theis T, Ganssle P, Kervern G, et al. Parahydrogen-enhanced zero-field nuclear magnetic resonance[J]. Nature Physics, 2011, 7(7): 571-575.

[34] Ledbetter M P, Theis T, Blanchard J W, et al. Near-zero-field nuclear magnetic resonance[J]. Physical Review Letters, 2011, 107(10): 107601.

[35] Liu G B, Li X F, Sun X P, et al. Ultralow field NMR spectrometer with an atomic magnetometer near room temperature[J]. Journal of Magnetic Resonance, 2013, 237: 158-163.

[36] Appelt S. Ben-Amar B A, Young A R, et al. Light narrowing of rubidium magnetic-resonance lines in high-pressure optical-pumping cells[J]. Physical Review A, 1999, 59(3): 2078-2084.

[37] Ledbetter M P, Savukov I M, Acosta V M, et al. Spin-exchange-relaxation-free magnetometry with Cs vapor[J]. Physical Review A, 2008, 77(3): 033408.

[38] VasilakisG. Precision measurements of spin interactions with high density atomic vapors[D]. Princeton: Princeton University, 2011: 90- 95.

[39] Butler M C, Ledbetter M P, Theis T, et al. Multiplets at zero magnetic field: the geometry of zero-field NMR[J]. The Journal of Chemical Physics, 2013, 138(18): 184202.

[40] Blanchard JW. Zero and ultra-low-field nuclear magnetic resonance spectroscopy via optical magnetometry[D]. Berkeley: University of California, 2014: 51- 56.

陈伯韬, 江敏, 季云兰, 边纪, 徐文杰, 张晗, 彭新华. 用于零场核磁共振探测的无自旋交换弛豫原子磁力仪[J]. 中国激光, 2017, 44(10): 1004001. Chen Botao, Jiang Min, Ji Yunlan, Bian Ji, Xu Wenjie, Zhang Han, Peng Xinhu. Spin-Exchange Relaxation Free Atomic Magnetometer for Zero-Field Nuclear Magnetic Resonance Detection[J]. Chinese Journal of Lasers, 2017, 44(10): 1004001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!