中国激光, 2013, 40 (5): 0502003, 网络出版: 2013-04-28   

高功率散热技术及高功率光纤激光放大器 下载: 738次

Cooling Technology of High-Power and High-Power Fiber Laser Amplifier
作者单位
1 中国科学院上海光学精密机械研究所 上海市全固态激光器与应用技术重点实验室, 上海 201800
2 中国科学院大学, 北京 100049
摘要
双包层光纤涂覆层的热损伤是高功率连续光纤激光器运转的主要限制因素之一。对高功率连续光纤激光器中的热效应进行研究,并对于仅由于涂覆层的热损伤引起的功率极限给出了理论模拟。进行了千瓦级光纤激光器中无源光纤与增益光纤熔点冷却的理论与实验研究。对于不同的冷却结构分别测量光纤与热沉之间的热接触电阻,并提供了有效的散热方案实现热量的有效传导。采用新型散热技术,基于主振荡功率放大(MOPA)结构,研制出1080 nm 1.11 kW全光纤激光器样机。放大级抽运光注入处熔点表面最大温度为327 K(54 ℃),运行过程中没有非线性效应和热损伤现象出现。
Abstract
Double-clading fiber coating thermal damage is one of the prime limiting factors for the operation of high-power continuous-wave (CW) fiber lasers. The thermal effects in high power CW fiber lasers are studied, and the maximum output power of fiber lasers limited by the thermal degradation of coatings is theoretically simulated. Theoretical and experimental studies of splice points cooling in 1 kW CW fiber lasers are presented. Thermal contact resistances between the fiber and its heat sink are measured separately for different geometries and efficient cooling methods to achieve effective heat conduction are proposed. By using these optimized methods, based on the master oscillator power amplifier (MOPA) architecture, a 1080 nm 1.11 kW all-fiber laser prototype is obtained. The maximum surface temperature at the pump light launching end splice of the booster amplifier is 327 K (54 ℃). Moreover, thermal or nonlinear effects have not been observed during operation.
参考文献

[1] B. Morasse, S. Chatigny, C. Desrosiers et al.. Simple design for singlemode high power CW fiber laser using multimode high NA fiber[C]. SPIE, 2009, 7195: 719505

[2] 楼祺洪, 何兵, 薛宇豪 等. 1.75 kW国产掺Yb双包层光纤激光器[J]. 中国激光, 2009, 36(5): 1277

    Lou Qihong, He Bing, Xue Yuhao et al.. 1.75 kW Yb-doped double cladding fiber laser made in China[J]. Chinese J. Lasers, 2009, 36(5): 1277

[3] 闫平, 肖起榕, 付晨 等. 1.6 kW全光纤掺镱激光器[J]. 中国激光, 2012, 39(4): 0416001

    Yan Ping, Xiao Qirong, Fu Chen et al.. 1.6 kW Yb-doped all-fiber laser[J]. Chinese J. Lasers, 2012, 39(4): 0416001

[4] Hu Xiao, Yanxing Ma, Pu Zhou et al.. Experimental study on kilowatt fiber laser in an all-fiber configuration[J]. Chin. Opt. Lett., 2012, 10(2): 021404

[5] IPG Photonics Corporation. IPG Photonics Successfully Tests World′s First 10 Kilowatt Single-Mode Production Laser [EB/OL]. [2012-09-01]. http://www.ipgphotonics.com

[6] Nufern. KW-Power Single-Mode Fiber Lasers Using 20-μm Core Yb-Doped DC Fibers [EB/OL]. [2012-09-02]. http://www.nufern.com/library/

[7] D. C. Brown, H. J. Hoffman. Thermal, stress, and thermal-optic effects in high average power double-clad silica fiber lasers[J]. IEEE J. Quantum Electron., 2001, 37(2): 207~217

[8] M. A. Lapointe, S. Chatigny, M. Piché et al.. Thermal effects in high power CW fiber lasers[C]. SPIE, 2009, 7195: 71951U

[9] Yuanyuan Fan, Bing He, Jun Zhou et al.. Thermal effects in kilowatt all-fiber MOPA [J]. Opt. Express, 2011, 19(16): 15162~15172

[10] B. Zintzen, T. Langer, J. Geiger et al.. Heat transport in solid and air-clad fibers for high-power fiber lasers[J]. Opt. Express, 2007, 15(25): 16787~16793

[11] J. P. Gwinn, R. L. Webb. Performance and testing of thermal interface materials [J]. Microelectron, 2003, 34(3): 215~222

[12] C. P. Chu, G. L. Solbrekken, Y. D. Chung. Thermal modeling of grease-type interface material in PPGA application [C]. 13th IEEE SEMI-THERM XIII, 1997. 57~63

[13] Yuanyuan Fan, Bing He, Jun Zhou et al.. Efficient heat transfer in high-power fiber lasers[J]. Chin. Opt. Lett., 2012, 10(11): 111401

[14] J. W. Kim, D. Y. Shen, K. Jayanta et al.. Fiber-laser-pumped ErYAG laser [J]. IEEE J. Sel. Top. Quantum Electron., 2009, 15(2): 361~371

[15] P. Yan, A. Xu, M. Gong. Numerical analysis of temperature distributions in Yb-doped double-clad fiber lasers with consideration of radiative heat transfer [J]. Opt. Eng., 2006, 45(12): 124201

代守军, 何兵, 周军, 赵纯. 高功率散热技术及高功率光纤激光放大器[J]. 中国激光, 2013, 40(5): 0502003. Dai Shoujun, He Bing, Zhou Jun, Zhao Chun. Cooling Technology of High-Power and High-Power Fiber Laser Amplifier[J]. Chinese Journal of Lasers, 2013, 40(5): 0502003.

本文已被 12 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!