中国激光, 2013, 40 (9): 0903002, 网络出版: 2013-07-09   

不锈钢表面陷光微结构的纳秒激光制备

Fabrication of Light Trapping Microstructures on Stainless Steel Surface by Nanosecond Laser
作者单位
1 江苏大学机械工程学院, 江苏 镇江 212013
2 江苏大学材料科学与工程学院 光子制造科学技术中心江苏省重点实验室, 江苏 镇江 212013
摘要
利用纳秒激光微加工技术在316L不锈钢表面制备了微孔阵列结构,实现了金属表面200~900 nm波长范围内光波的吸收增强。获得的微孔结构的直径和深度取决于激光的单脉冲能量和累积脉冲数。单脉冲能量相同时,随累积脉冲数的增加,孔深/孔径比增加,脉冲次数超过1200时,比值趋于稳定。相同累积脉冲数条件下,单脉冲能量越小,孔深/孔径比越大。通过表面光反射率测试对微结构的陷光性能进行了评价,在微孔投影面积占总面积的比例相等、脉冲次数相同的条件下,单脉冲能量越小,所得微孔阵列结构的陷光能力越强。初步探讨了微孔结构特征的形成原因,以及微结构在提高金属表面陷光性能中的作用。
Abstract
The micropore array structure is fabricated by nanosecond laser on 316L stainless steel surface. The microstructured metal surface shows a great absorption enhancement with a wavelength range of 200~900 nm. The diameters and heights of the micropores depend on the single laser pulse energy and laser pulse number. With the increase of the laser pulse number, the depth/diameter ratio of the micropore increases, and the ratio tends to be stable when the pulse number is more than 1200. With the same pulse number, the weaker the single pulse energy is, the larger the depth/diameter ratio is. The optical absorption properties of the microstructures are estimated by the surface light reflectivity test. For the same ratio of the micropore projected area to the total area and the same pulse number, the lower the single pulse energy is, the stronger the light trapping ability of the micropore array structure is. The formation mechanisms of the micropores and the roles of these micropores in changing metal-surface optical absorption are preliminarily discussed.
参考文献

[1] 吴文威, 徐嘉明, 陈宏彦. “黑硅”表面特殊锥状尖峰结构的制备及其光学模型仿真[J]. 中国激光, 2011, 38(6): 0603029.

    Wu Wenwei, Xu Jiaming, Chen Hongyan. Simulation of optical model base on micro-cones structure of “black silicon”[J]. Chinese J Lasers, 2011, 38(6): 0603029.

[2] N I Landy, S Sajuyigbe, J J Mock, et al.. Perfect metamaterial absorber[J]. Phys Rev Lett, 2008, 100(20): 207402.

[3] N P Fox. Trap detectors and their properties[J]. Metrologia, 1991, 28(3): 197-202.

[4] M Ibn-Elhaj, M Schadt. Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies[J]. Nature, 2001, 410(6830): 796-799.

[5] A Divochiy, F Marsili, D Bitauld, et al.. Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths[J]. Nat Photonics, 2008, 2(5): 302-306.

[6] A Y Vorobyev, C L Guo. Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals[J]. Appl Phys A, 2007, 86(3): 321-324.

[7] 黄永光, 刘世炳. Ti-6Al-4V合金表面微纳米结构的超快激光制备及其反射光谱响应[J]. 中国激光, 2009, 36(12): 3133-3137.

    Huang Yongguang, Liu Shibing. Preparation and reflection spectra response of Ti-6Al-4V alloy surface with ultrafast laser micro-nano-structuring[J]. Chinese J Lasers, 2009, 36(12): 3133-3137.

[8] Y Yang, J J Yang, C Y Liang, et al.. Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses[J]. Opt Express, 2008, 16(15): 11259-11265.

[9] L A Dobrzański, A Drygaa, K Goombek, et al.. Laser surface treatment of multicrystalline silicon for enhancing optical properties[J]. J Mater Process Tech, 2008, 201(1-3): 291-296.

[10] K Paivasaari, J J J Kaakkunen, M Kuittinen, et al.. Enhanced optical absorptance of metals using interferometric femtosecond ablation[J]. Opt Express, 2007, 15(21): 13838-13843.

[11] J J J Kaakkunen, K Paivasaari, M Kuittinen, et al.. Morphology studies of the metal surfaces with enhanced absorption fabricated using interferometric femtosecond ablation[J]. Appl Phys A, 2009, 94(2): 215-220.

[12] A Y Vorobyev, C L Guo. Femtosecond laser blackening of platinum[J]. J Appl Phys, 2008, 104(5): 053516.

[13] A Y Vorobyev, Chunlei Guo. Metallic light absorbers produced by femtosecond laser pulses[J]. Advances in Mechanical Engineering, 2009, 2010: 452749.

[14] Chunlei Guo, A Y Vorobyev. Black metals produced by femtosecond laser pulses[C]. AIP Conference Proceedings, 2010, 1278: 838-842.

[15] 温雅, 彭滟, 张冬生, 等. 飞秒激光脉冲能量对SF6气体环境下硅表面尖峰结构形成的影响[J]. 中国激光, 2012, 39(4): 0406001.

    Wen Ya, Peng Yan, Zhang Dongsheng, et al.. Effect of pulse energy of femtosecond laser on the formation of spikes on the silicon surface in the ambient gas of SF6[J]. Chinese J Lasers, 2012, 39(4): 0406001.

[16] 钱超峰, 王庆康, 李海华. 超陷光黑硅结构研究[J]. 光学学报, 2011, 31(10): 1005007.

    Qian Chaofeng, Wang Qingkang, Li Haihua. Design of black silicon with ultra-light-trapping structure[J]. Acta Optica Sinica, 2011, 31(10): 1005007.

[17] J T Zhu, L Zhao, W Li, et al.. Great enhancement of infrared light absorption of silicon surface-structured by femtosecond laser pulses in N2 ambient[J]. Mater Lett, 2006, 60(17-18): 2187-2189.

[18] A Y Vorobyev, C L Guo. Direct femtosecond laser surface nano/microstructuring and its applications[J]. Laser Photonics Rev, 2013, 7(3): 385-407.

[19] D Q Yuan, M Zhou, L Cai, et al.. Micromachining of Au film by femtosecond pulse laser[J]. Spectrosc Spect Anal, 2009, 29(5): 1209-1212.

[20] 钱勇, 冯仕猛. 多晶硅表面陷阱坑形貌对表面光反射率的影响[J]. 光学学报, 2012, 32(2): 0224001.

    Qian Yong, Feng Shimeng. Effect of multi-crystalline silicon pit-trap shape on the optical reflectance[J]. Acta Optica Sinica, 2012, 32(2): 0224001.

吴勃, 周明, 李保家, 蔡兰. 不锈钢表面陷光微结构的纳秒激光制备[J]. 中国激光, 2013, 40(9): 0903002. Wu Bo, Zhou Ming, Li Baojia, Cai Lan. Fabrication of Light Trapping Microstructures on Stainless Steel Surface by Nanosecond Laser[J]. Chinese Journal of Lasers, 2013, 40(9): 0903002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!