半导体光电, 2018, 39 (4): 517, 网络出版: 2018-08-29  

湿腐蚀法制备塑料光纤折射率传感器

Wet Etching Technique for Fabrication of Plastic Optical Fiber Refractive Index Sensor
作者单位
重庆理工大学 现代光电检测与仪器重庆市高校重点实验室 光纤传感与光电检测重庆市重点实验室, 重庆 400054
摘要
为了获得高灵敏度的塑料光纤折射率传感器, 提出了一种湿腐蚀制备塑料光纤传感器的方法。首先利用三氯甲烷和无水乙醇配制了塑料光纤腐蚀剂; 接着研究了腐蚀剂浓度、温度对塑料光纤腐蚀速率及腐蚀后表面形貌的影响; 然后研究了传感器经不同浓度和不同温度腐蚀剂腐蚀后的传输光谱特性; 最后利用葡萄糖溶液测试了经过不同腐蚀条件腐蚀后的传感器灵敏度。实验结果表明, 光纤的腐蚀速率随着腐蚀剂浓度和温度的升高而增大; 光纤腐蚀后的表面形貌、光谱传输特性及传感器灵敏度受腐蚀条件影响显著; 当腐蚀剂温度为20℃、浓度为70%时, 可以获得光滑、干净的腐蚀光纤表面, 此时传感器具有较好的光谱传输质量, 同时传感器的灵敏度达到3.8[(RIU)]-1。
Abstract
In this study, a simple wet etching technique is developed for the fabrication of a high-sensitivity plastic optical fiber (POF) refractive index sensor. Firstly, the etchant was prepared by employing the chloroform and anhydrous ethanol. Secondly, the effects of the concentration and temperature of the etchant on the etching rate and surface morphology of the POFs were investigated, and the transmission spectrum of the etched POF sensors was examined. Thirdly, the sensitivity of the etched POF sensors was checked by using the glucose solutions. The experimental results show that the etching rate of the POFs increases with increasing of the etchant’s concentration and temperature. The surface morphology, transmission spectrum and sensitivity of the etched POF were significantly affected by the etching conditions, in particular, the POF sensors, which are fabricated using the etchant with a concentration of 70% under temperature of 20℃, exhibiting good light transmission and a high sensitivity of 3.8[(RIU)]-1 in the glucose solutions.
参考文献

[1] Koike Y, Inoue A. High-speed graded-index plastic optical fibers and their simple interconnects for 4K/8K video transmission[J]. J. of Lightwave Technol., 2016, 34(6): 1551-1555.

[2] Shi Y, Tangdiongga E, Koonen A M J, et al. Plastic-optical-fiber-based in-home optical networks[J]. IEEE Commun. Magazine, 2014, 52(6): 186-193.

[3] Cennamo N, Pesavento M, Lunelli L, et al. An easy way to realize SPR aptasensor: A multimode plastic optical fiber platform for cancer biomarkers detection[J]. Talanta, 2015, 140: 88-95.

[4] Wandermur G, Rodrigues D, Allil R, et al. Plastic optical fiber-based biosensor platform for rapid cell detection[J]. Biosensors and Bioelectron., 2014, 54: 661-666.

[5] Zhong N B, Zhao M F, Zhong L C, et al. A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2[J]. Biosensors and Bioelectron., 2016, 5: 876-882.

[6] Cennamo N, Testa G, Marchetti S, et al. Intensity-based plastic optical fiber sensor with molecularly imprinted polymer sensitive layer[J]. Sensors and Actuators B: Chem., 2017, 241: 534-540.

[7] Xin X, Zhong N B, Liao Q, et al. High-sensitivity four-layer polymer fiber-optic evanescent wave sensor[J]. Biosensors and Bioelectron., 2017, 91: 623-628.

[8] 钟年丙, 李超楠, 刘 洋, 等. 老化处理对塑料光纤传感器光传输及灵敏度的影响[J]. 光学 精密工程, 2016, 24(5): 971-978.

    Zhong N B, Li Ch N, Liu Y, et al. Effects of aging treatment on light transmission and sensitivity of plastic optical fiber sensor[J]. Opt. and Precision Eng., 2016, 24(5): 971-978.

[9] 李超楠, 钟年丙, 汪正坤, 等. 水浴处理对塑料光纤传感器灵敏度及温度独立性的影响[J]. 光学 精密工程, 2016, 24(10): 66-73.

    Li C N, Zhong N B, Wang Z K, et al. Effect of water-heat treatment sensitivity and temperature-independent of plastic optical fiber sensor[J]. Opt. and Precision Eng., 2016, 24(10): 66-73.

[10] Gowri A, Sai V V R. Development of LSPR based U-bent plastic optical fiber sensors[J]. Sensors and Actuators B: Chem., 2016, 230: 536-543.

[11] Teng C, Yu F, Jing N, et al. Investigation of refractive index sensors based on side-polished plastic optical fibers[J]. Opt. Fiber Technol., 2017, 36: 1-5.

[12] Ujihara H, Hayashi N, Minakawa K, et al. Polymer optical fiber tapering without the use of external heat source and its application to refractive index sensing[J]. Appl. Phys. Express, 2015, 8(7): 072501.

[13] Vijayan A, Gawli S, Kulkarni A, et al. An optical fiber weighing sensor based on bending[J]. Measurement Science & Technol., 2008, 19(10): 105302.

[14] Batumalay M, Harun S W, Ahmad F, et al. Tapered plastic optical fiber coated with graphene for uric acid detection[J]. IEEE Sensors J., 2014, 14(5): 1704-1709.

[15] Batumalay M, Harith Z, Rafaie H A, et al. Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity[J]. Sensors & Actuators A: Phys., 2014, 210(4): 190-196.

[16] Rajan G, Liu B, Luo Y, et al. High sensitivity force and pressure measurements using etched single mode polymer fiber Bragg gratings[J]. IEEE Sensors J., 2013, 13(5): 1794-1800.

[17] Bhowmik K, Peng G D, Luo Y, et al. High intrinsic sensitivity etched polymer fiber Bragg grating pair for simultaneous strain and temperature measurements[J]. IEEE Sensors J., 2016, 16(8): 2453-2459.

[18] Bhowmik K, Peng G D, Ambikairajah E, et al. Intrinsic high-sensitivity sensors based on etched single-mode polymer optical fibers[J]. IEEE Photon. Technol. Lett., 2015, 27(6): 604-607.

[19] Zhong N B, Liao Q, Zhu X, et al. High-quality fiber fabrication in buffered hydrofluoric acid solution with ultrasonic agitation[J]. Appl. Opt., 2013, 52(7): 1432-1440.

[20] Zhong N B, Zhu X, Liao Q, et al. Effects of surface roughness on optical properties and sensitivity of fiber-optic evanescent wave sensors[J]. Appl. Opt., 2013, 52(17): 3937-3945.

[21] 钟年丙, 廖 强, 朱 恂, 等. 超声技术在石英光纤腐蚀中的运用[J]. 光学 精密工程, 2012, 20(5): 988-995.

    Zhong N B, Liao Q, Zhu X, et al. Application of ultrasonic technology to etching silica optical fiber[J]. Opt. and Precision Eng., 2012, 20(5): 988-995.

[22] Zhong N B, Wang Z K, Chen M, et al. Three-layer-structure polymer optical fiber with a rough inter-layer surface as a highly sensitive evanescent wave sensor[J]. Sensors & Actuators B: Chem., 2017, 254: 133-142.

[23] 刘 锐, 闫大鹏, 李 成, 等. 一种后处理制备光滑腐蚀光纤表面的方法[P]. 中国: CN103553367A, 2014.

    Liu Rui, Yan Dapeng, Li Cheng, et al. A method for preparing smooth corroded fiber surface by post-treatment[P]. CHN: CN103553367A, 2014.

[24] Pekcan O, Ugur S. Real-time monitoring of swelling and dissolution of poly(methylmethacrylate) discussing fluorescence probes[J]. Polymer, 1997, 38(9): 2183-2189.

[25] Bobiak J P, Koenig J L. Fourier transform infrared imaging of stereoregular poly(methylmethacrylate) dissolution[J]. Appl. Spectroscopy, 2004, 58(10): 1141.

赵明富, 戴浪, 钟年丙, 罗彬彬, 汤斌, 石胜辉, 宋涛, 黄丽雯, 邹雪. 湿腐蚀法制备塑料光纤折射率传感器[J]. 半导体光电, 2018, 39(4): 517. ZHAO Mingfu, DAI Lang, ZHONG Nianbing, LUO Binbin, TANG Bin, SHI Shenghui, SONG Tao, HUANG Liwen, ZOU Xue. Wet Etching Technique for Fabrication of Plastic Optical Fiber Refractive Index Sensor[J]. Semiconductor Optoelectronics, 2018, 39(4): 517.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!