量子电子学报, 2016, 33 (3): 306, 网络出版: 2016-06-15  

外加磁场对微空心阴极放电的影响

Influence of external magnetic field on micro-hollow cathode discharge
作者单位
重庆邮电大学光电工程学院光电信息感测与传输技术重庆市重点实验室, 重庆 400065
摘要
采用C语言编程实现的三维系综蒙特卡罗模型研究了 外加磁场对微空心阴极放电的影响。研究结果显示,当气体压强和外加电压保持不变时,在微空心阴极放电 系统中加入外部磁场后,阴极方向电子密度分布变化不大,轴向和侧向电子漂移范围减小,电子能 量向低能方向移动,但是外加磁场对高气压微空心阴极放电的影响整体上不如对低气压放电的影响明显。 研究结果对于理解微空心阴极放电等离子体的机理具有一定的指导意义。
Abstract
Three-dimensional ensemble Monte Carlo model is employed using C programming language to investigate the impact of different cathode aperture sizes to micro-hollow cathode discharges. Results show that in argon under constant pressure and voltage, when an external magnetic field is added in a micro-hollow cathode discharge, the distribution of electron density has not change much in cathode, and electron drift range reduces in the axial and lateral direction, and electron energy becomes lower. But the applied magnetic field has a less obvious effect on high-pressure micro-hollow cathode discharges than low-pressure discharges on the whole. The research results have a certain guiding significance on the mechanism of the micro-hollow cathode discharge plasma.
参考文献

[1] Lennon E A, et al. Operating modes and power considerations of microhollow cathode discharge devices with elongated trenches[J]. Curr. Appl. Phys., 2012, 12(4): 1064-1073.

[2] Zheng Peichao, Wang Hongmei, Li Jianquan, et al. Characterization of an atmospheric pressure DC microplasma jet[J]. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2008, 28(10): 2224-2227 (in Chinese).

[3] Fukuhara D, et al. Characterization of a microhollow cathode discharge plasma in helium or air with water vapor[J]. Plasma Science and Technology, 2013, 15(2): 129-132.

[4] Jiang Chao, Wang Youqing. New discharge configuration for mini-laser[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2005, 22(2): 142-149 (in Chinese).

[5] Zheng Peichao, Wang Jinmei, Hu Zhangfang. Surface modification of polyimide film with atmospheric pressure microplasma jet[J]. High Voltage Engineering (高电压技术), 2010, 3(6): 1542-154(in Chinese).

[6] Xia Guangqing, Mao Genwang, Nader Sadeghi. Research on microhollow cathode discharge for application in electrothermal propulsion[J]. Journal of Astronautic (宇航学报), 2008, 29(5): 1607-1611 (in Chinese).

[7] Moselhy M, et al. Excimer emission from cathode boundary layer discharges[J]. J. Appl. Phys., 2004, 95(4): 1642-1649.

[8] Qin Feng, Chang Anbi, Ding Enyan, et al. Particle-in-cell simulation of pseudospark switch based on particle-in-cell plus Monte-Carlo collision method[J]. High Power Laser and Particle Beams (强激光与粒子束), 2010, 22(2): 447-451 (in Chinese).

[9] Zheng Feiteng, Yang Zhonghai, Jin Xiaolin. The initiation phase of pseudospark discharge in a hollow cathode via PlC/MCC simulation[J]. Acta Physica Sinica (物理学报), 2008, 57(2): 990-995 (in Chinese).

[10] Zhang Hongwei, Meng Lin, Yan Yang. PIC simulation of the initial discharge of a pseudospark discharge[J]. Journal of University of Electronic Science and Technology of China (电子科技大学学报), 2007, 3(5): 927-930 (in Chinese).

[11] Bogaerts A, et al. Monte Carlo simulation of an analytical glow discharge: Motion of electrons, ions and fast neutrals in the cathode dark space[J]. Spectrochimica Acta, 1995, 50B(2): 179-196.

[12] Carman R J. A simulation of electron motion in the cathode sheath region of a glow discharge in argon[J]. J. Phys. D: Appl. Phys., 1989, 22: 55-66.

[13] Chen Yongzhou, Chen Qingming, Li Jun, et al. Computer simulation of the electron motion in a helium hollow cathode discharge confined by a magnatic field[J]. Acta Physica Sinica (物理学报), 1998, 47(10): 1665-1672 (in Chinese).

王金梅, 郑培超. 外加磁场对微空心阴极放电的影响[J]. 量子电子学报, 2016, 33(3): 306. WANGJinmei, ZHENG Peichao. Influence of external magnetic field on micro-hollow cathode discharge[J]. Chinese Journal of Quantum Electronics, 2016, 33(3): 306.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!