中国激光, 2015, 42 (4): 0405005, 网络出版: 2015-04-08   

基于模拟移相补偿的长距离光纤频率传输

Radio-Frequency Transfer over a Long-Distance Fiber Link Based on Analog Phase Shift Compensation
作者单位
北京大学信息科学技术学院, 北京 100871
摘要
为实现频率信号在长距离光纤上的高精度传输,设计了一个纯电的相位补偿系统,其补偿速度较快,范围较大,且便于模块化。该系统主要利用两次模拟移相抵消返回信号中所引入的双程相位抖动来进行补偿,结构简单,易于调试。通过引入数字信号处理和比例积分微分(PID)控制算法,可以提高系统的补偿精度和工作稳定性。最后,利用该系统在100 km 的实验室光纤上进行100 MHz 频率信号的传输实验,得到的频率稳定度为3.9×10-14/s 和1.1×10-16/4000 s,证明了此方法在长距离光纤频率传输中的可行性,为导航、航天以及空间探测等领域中远距离站点的协同工作,提供频率同步支持。
Abstract
To achieve high- stability and high- precision dissemination of radio frequency signals over a long distance optical fiber link, a pure-electric phase compensation system is proposed. It can be easily modularized and achieve highly compensation speed and range. This system mainly uses two analog phase shifters to balance the phase fluctuation introduced by the round-trip fiber link. Due to the simple structure, it is easy to debug and test. By introducing the digital signal processing and proportion integration differentiation (PID) control algorithm, the system can effectively compensate the fiber- induced phase noise and ensure a high- accuracy frequency distribution. Finally, using this system in a 100 MHz frequency transfer experiment via 100 km optical fiber, an stabilities of 3.9×10-14/s and 1.1×10-16/4000 s are achieved. The experiment proves that this system is feasible in the long-distance radio frequency transfer and provides a technical support for the frequency synchronization needed in the cooperative working of remote stations, such as navigation, aerospace and space exploration.
参考文献

[1] J Levine. A review of time and frequency transfer methods[J]. Metrologia, 2008, 45(6): 162-174.

[2] L Sliwczynski, P Krehlik, M Lipinski. Optical fibers in time and frequency transfer[J]. Measurement Science and Technology, 2010, 21(7): 075302.

[3] 李得龙, 程清明, 张宝富, 等. 光纤链路时延波动对频率传递稳定度的影响[J]. 激光与光电子学进展, 2014, 51(1): 010602.

    Li Delong, Cheng Qingming, Zhang Baofu, et al.. Research on the impact of optical fiber link delay fluctuation on frequency transfer stability[J]. Laser & Optoelectronics Progress, 2014, 51(1): 010602.

[4] L S Ma, P Jungner, J Ye, et al.. Delivering the same optical frequency at two places: Accurate cancellation of phase noise introduced by an optical fiber or other time-varying path [J]. Opt Lett, 1994, 19(21): 1777-1779.

[5] O Lopez, A Amy-Klein, C Daussy, et al.. 86-km optical link with a resolution of 2×10- 18 for RF frequency transfer[J]. European Physical D, 2008, 48(1): 35-41.

[6] O Lopez, A Amy-Klein, M Lours, et al.. High-resolution microwave frequency dissemination on an 86-km urban optical link[J]. Appl Phys B, 2010, 98(4): 723-727.

[7] G Marra, R Slavík, H S Margolis, et al.. High-resolution microwave frequency transfer over an 86-km-long optical fiber network using a mode-locked laser[J]. Opt Lett, 2011, 36(4): 511-513.

[8] 陈瑞昊, 吴龟灵, 邹卫文, 等. 光纤频率传输光学相位补偿系统设计[J]. 光通信技术, 2014, 4: 1-4.

    Chen Ruihao, Wu Guiling, Zou Weiwen, et al.. Optical phase compensation system design for frequency transferover optical fiber[J]. Optical Communication Technology, 2014, 4: 1-4.

[9] B Wang, C Gao, W L Chen, et al.. Precise and continuous time and frequency synchronisation at 5×10-19 accuracy level[J]. Scientific Reports, 2012, 2: 556.

[10] L S′ liwczynski , P Krehlik, A Czubla, et al.. Dissemination of time and RF frequency via a stabilized fibre optic link over a distance of 420 km[J]. Metrologia, 2013, 50(2): 133-145.

[11] M Kumagai, M Fujieda, S Nagano, et al.. Stable radio frequency transfer in 114 km urban optical fiber link[J]. Opt Lett, 2009, 34(19): 2949-2951.

[12] M Amemiya, M Imae, Y Fujii, et al.. System for precise dissemination of frequency standard via optical fiber[J]. Electronics and Communications in Japan, 2012, 95(3): 45-54.

[13] Yabai He, B J Orr, K G H Baldwin, et al.. Stable radio-frequency transfer over optical fiber by phase-conjugate frequency mixing [J]. Opt Express, 2013, 21(16): 18754-18764.

[14] B Ning, P Du, D Hou, et al.. Phase fluctuation compensation for long-term transfer of stable radio frequency over fiber link[J]. Opt Express, 2012, 20(27): 28447-28454.

[15] B Ning, D Hou, T Zheng, et al.. Hybrid analog-digital fiber-based radio-frequency signal distribution[J]. IEEE Photon Technol Lett, 2013, 25(16): 1551-1554.

[16] 李得龙, 卢麟, 张宝富, 等. 基于相位波动远端补偿的微波频率光纤传递新方法[J]. 光学学报, 2014, 34(7): 0706001.

    Li Delong, Lu Lin, Zhang Baofu, et al.. New microwave frequency dissemination method over optical fiber based on the phase fluctuation compensated at remote sites[J]. Acta Optica Sinica, 2014, 34(7): 0706001.

[17] 华芸, 桂有珍, 杨飞, 等. 光纤时频传输系统的中继技术分析[J]. 中国激光, 2012, 39(9): 0905002.

    Hua Yun, Gui Youzhen, Yang Fei, et al.. Analysis of repeater for time and frequency dissemination via optical fiber[J]. Chinese J Lasers, 2012, 39(9): 0905002.

[18] 常乐, 董毅, 孙东宁, 等. 光纤稳相微波频率传输中相干瑞利噪声的影响和抑制[J]. 光学学报, 2012, 32(5): 0506004.

    Chang Le, Dong Yi, Sun Dongning, et al.. Influence and suppression of coherent Rayleigh noise in fiber-optical-based phasestabilized microwave-frequency transmission system[J]. Acta Optica Sinica, 2012, 32(5): 0506004.

[19] 何芝强. PID 控制器参数整定方法及其应用研究[D]. 杭州: 浙江大学, 2005: 1-35.

    He Zhiqiang. Parameters Tuning of PID Controller and Its Application[D]. Hangzhou: Zhejiang University, 2005: 1-35.

任丽霞, 章双佑, 钱程, 赵建业. 基于模拟移相补偿的长距离光纤频率传输[J]. 中国激光, 2015, 42(4): 0405005. Ren Lixia, Zhang Shuangyou, Qian Cheng, Zhao Jianye. Radio-Frequency Transfer over a Long-Distance Fiber Link Based on Analog Phase Shift Compensation[J]. Chinese Journal of Lasers, 2015, 42(4): 0405005.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!