中国激光, 2007, 34 (9): 1303, 网络出版: 2007-10-17   

不同激光热源模式下薄板弯曲特性数值模拟

Numerical Simulation of Bending Properties for Sheet Metal with Different Laser Source Modes
作者单位
1 哈尔滨工业大学现代焊接生产技术国家重点实验室, 黑龙江 哈尔滨 150001
2 哈尔滨焊接研究所, 黑龙江 哈尔滨 150080
摘要
利用非线性有限元分析软件,建立了纯铝薄板激光成形过程的三维弹塑性热力耦合有限元模型。选择等面积的圆形、方形、矩形1/4和矩形4/1光斑激光热源模式(矩形1/4和4/1表示激光光斑沿着光束扫描方向尺寸与垂直光束扫描方向尺寸的比例分别为1:4和4:1),对不同激光热源模式下的板材弯曲特性进行了数值模拟计算,并分析了各种热源模式作用下板材温度场、位移场和应力应变场的特点。结果表明,在扫描过程中,圆形光斑热源模式获得了最高的峰值温度和上下表面温度差;而矩形1/4激光热源模式获得了最大的高温区作用宽度。矩形1/4激光热源模式产生了最大的塑性区宽度及上下表面总塑性应变差,因此获得了最大的弯曲角,内部残余应力最低。
Abstract
The three-dimensional elastoplastic thermo-mechanical coupled finite element model of laser forming for pure aluminum plates is established with nonlinear finite element analysis software Msc.Marc. Circular, square, rectangular 1/4 ( the size ratio of laser spot along the laser scanning direction and its vertical direction is 1:4, same as below) and rectangular 4/1 laser spots with the same area are chosed as the heat sources. The bending properties of sheet metal with four different laser source modes are simulated, and the temperature field, displacement field, stress and strain field are analyzed. The results show that the circular laser spot acquires the highest temperature peak value and temperature differences between upper and lower surfaces, while the rectangular1/4 laser spot acquires the largest width of high temperature zone. The rectangular 1/4 laser spot which owns the widest plastic strain zone and highest total plastic strain differences between upper and lower surfaces obtains the highest bending angle,and also the lowest residual stress.
参考文献

[1] Li Liqun, Wang Xuyou, Lin Shangyang et al.. Experimental and numerical study of energy effects in laser forming [J]. Applied Laser, 2002, 22(2):155~159
李俐群,王旭友,林尚扬 等. 能量因素对激光成形的影响[J]. 应用激光, 2002, 22(2):155~159

[2] . J. Chen, S. C. Wu, M. Q. Li. Studies on laser forming of Ti-6Al-4V alloy sheet[J]. Journal of Materials Processing Technology, 2004, 152(1): 62-65.

[3] . Lawrence Yao. Numerical and experimental investigation of convex laser forming process[J]. Journal of Manufacturing Process, 2001, 3(2): 73-81.

[4] . P. Edwardson, E. Abed, K. Bartkowiak et al..Geometrical influences on multi-pass laser forming[J]. J. Phys. D: Appl. Phys., 2006, 39: 382-389.

[5] Chen Yanbin, Li Liqun, Lin Shangyang. The FEM simulation of the temperature field in laser forming [J]. Applied Laser, 2002, 22(2):145~149
陈彦宾,李俐群,林尚扬. 激光弯曲成形温度场的有限元数值模拟[J]. 应用激光, 2002, 22(2):145~149

[6] Guan Yanjin, Sun Sheng, Zhao Guoqun. Process simulation and mechanism study on laser tube bending [J]. Applied Laser, 2006, 26(2):85~89
管延锦,孙胜,赵国群. 管材激光弯曲成形有限元工艺仿真及其机理研究[J]. 应用激光, 2006, 26(2):85~89

[7] Li Liqun. Mechanism of laser forming and numerical simulation for sheet metal [D]. Dissertation for Ph.D Degree, Haerbin: Haerbin Institute of Technology, 2003. 59~60, 64~67
李俐群. 激光成形机理及其数值模拟[D]. 博士学位论文, 哈尔滨:哈尔滨工业大学, 2003. 59~60, 64~67

石经纬, 李俐群, 陈彦宾, 王威. 不同激光热源模式下薄板弯曲特性数值模拟[J]. 中国激光, 2007, 34(9): 1303. 石经纬, 李俐群, 陈彦宾, 王威. Numerical Simulation of Bending Properties for Sheet Metal with Different Laser Source Modes[J]. Chinese Journal of Lasers, 2007, 34(9): 1303.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!