光子学报, 2013, 42 (10): 1248, 网络出版: 2013-12-16  

运动原子和不同初始场相互作用系统中熵和纠缠的研究

Entropy and Entanglement of a Moving Atom Interacting with Different Initial Fields
作者单位
1 南昌大学电子信息工程系
2 南昌大学材料科学与工程学院,南昌 330031
3 北京师范大学 射线束技术与材料改性教育部重点实验室,北京 100875
4 COMSATS信息技术学院物理系,拉合尔 54000,巴基斯坦
摘要
通过计算线性熵研究了当场初始处于薛定谔猫态和压缩相干态时Jaynes-Cummings模型中原子线性熵随时间的演化特性,讨论了原子运动和场模结构参数对原子线性熵的影响.结果发现原子和场之间的纠缠对压缩参数非常敏感,并且结果表明当腔场初始处于Yurke-Stoler 态时,原子的运动导致了线性熵的周期性演化,随着场模结构参数的增加,不但线性熵的演化周期缩短,而且线性熵的的幅值减小.当腔场初始处于偶相干态时,场模结构参数的增加导致了线性熵的演化周期缩短,然而对线性熵的幅值没有影响.
Abstract
The effects of the atomic motion and the field-mode structure, on the evolution of the linear entropy of the atom were examined in the Jaynes-Cummings model by means of linear entropy when the field was initially prepared in Schrdinger cat state and squeezed coherent state. It was found that the degree of entanglement between the atom and the field is very sensitive to the squeezing parameter. It was shown that the atomic motion leads to the periodic evolution of the linear entropy and an increase in field-mode structure parameter results in shortening of the evolution period of the linear entropy and decreasing in the amplitude of the linear entropy when the field is initially in Yurke-Stoler state. Furthermore, the increase of field-mode structure parameter leads to the shortening of the evolution periodicity of the linear entropy, but has no effect on the amplitude of the linear entropy when the field is initially in even coherent state.
参考文献

[1] PERES A. Quantum theory: concepts and methods[M]. The Netherlands: Kluwer Academic, Dordrecht, 1993.

[2] ALBER G, BETH T, HORODECKI M, et al. Quantum information: an introduction to basic concepts and experiments[M]. Berlin: Springer, 2001.

[3] EKERT A. Quantum cryptography based on Bell′s theorem[J]. Physical Review Letters, 1991, 67(6): 661-663.

[4] BENNETT C H, BRASSARD G, CREPEAU C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 1993, 70(13): 1895-1899.

[5] BENNETT C H, WIESNER S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states[J]. Physical Review Letters, 1993, 69(16): 2881-2884.

[6] MOZES S, OPPENHEIM J, REZNIK B. Deterministic dense coding with partially entangled states[J]. Physical Review A, 2005, 71(1): 012311-1-7.

[7] LIEB E H, SEIRINGER R. Coherent control of trapped ions using off-resonant lasers[J]. Physical Review A, 2005, 71(6): 062309-1-13.

[8] BISWAS A, AGARWAL G S. Strong subadditivity inequality for quantum entropies and four-particle entanglement[J]. Physical Review A, 2003, 68(5): 054303-1-4.

[9] GLCKL O, LORENZ S, MARQUARDT C, et al. Experiment towards continuous-variable entanglement swapping: Highly correlated four-partite quantum state[J]. Physical Review A, 2003, 68(1): 012319-1-8.

[10] YANG M, SONG W, CAO Z L. Entanglement swapping without joint measurement[J]. Physical Review A, 2005, 71(3): 034312-1-3.

[11] LI H R, LI F L, YANG Y, et al. Entanglement swapping of two-mode Gaussian states in a thermal environment[J]. Physical Review A, 2005, 71(2): 022314-1-7.

[12] PHOENIX S J D, KNIGHT P L. Fluctuations and entropy in models of quantum optical resonance[J]. Annals of Physics, 1988, 186(2): 381-407.

[13] PHOENIX S J D, KNIGHT P L. Establishment of an entangled atom-field state in the Jaynes-Cummings model[J]. Physical Review A, 1991, 44(9): 6023-6029.

[14] GEA-BANACLOCHE J. Collapse and revival of the state vector in the Jaynes-Cummings model: An example of state preparation by a quantum apparatus[J]. Physical Review Letters, 1990, 65(27): 3385-3388.

[15] GEA-BANACLOCHE J. Atom- and field-state evolution in the Jaynes-Cummings model for large initial fields[J]. Physical Review A, 1991, 44(9): 5913-5931.

[16] BUEK V, MOYA-CESSA H, KNIGHT P L. Schrdinger-cat states in the resonant Jaynes-Cummings model: Collapse and revival of oscillations of the photon-number distribution[J]. Physical Review A, 1992, 45(11):8190-8203.

[17] BUEK V, HLADKY B. Macroscopic superposition states of light via 2-photon resonant interaction of atoms with cavity field[J]. Journal of Modern Optics, 1993, 40(7): 1309-1324.

[18] FANG M F, ZHOU G H. Influence of atomic coherence on the evolution of field entropy in multiphoton processes[J]. Physics Letters A, 1994, 184(6): 397-402.

[19] FANG M F, LIU H E. Properties of entropy and phase of the field in the two-photon Jaynes-Cummings model with an added Kerr medium[J]. Physics Letters A, 1995, 200(3-4): 250-256.

[20] FANG M F. Entropy evolution of the bimodal field interacting with an effective 2-level atom via the Raman transition[J]. Journal of Modern Optics, 1994, 41(7): 1319-1326.

[21] FANG M F, ZHOU P. Entropy propertites of the field in the two-photon Jaynes-Cummings model with an additional Kerr medium[J]. Acta Physica Sinica, 1994, 43(4): 570-579.

[22] FANG M F, ZHOU P. Quantum entropy and entanglement in the Jaynes-Cummings model without the rotating-wave approximation[J]. Physica A, 1996, 234(1-2): 571-580.

[23] OBADA A S F, MOHAMMED F A, HESSIAN H A, et al. Entropies and entanglement for initial mixed state in the multi-quanta JC model with the stark shift and Kerr-like medium[J]. International Journal of Theoretical Physics, 2007, 46(4): 1027-1044.

[24] MOYA-CESSAT H, VIDIELLA-BARRANCO A. Interaction of superpositions of coherent states of light with two-level atoms[J]. Journal of Modern Optics, 1992, 39(7): 2481-2499.

[25] MAHMOUD A A, ABD AL-KADER G M, OBADA A S F. Entropy and entanglement of an effective two-level atom interacting with two quantized field modes in squeezed displaced fock states[J]. Chaos, Solitons and Fractals, 2001, 12(13): 2455-2470.

[26] FANG M F. Effects of atomic motion and field mode structure on the field entropy and Schrdinger-cat states in the Jaynes-Cummings model[J]. Physica A, 1998, 259(1-2): 193-204.

[27] LIAO X P, FANG M F, ZHOU Q P. Quantum entanglement in the SU(1, 1)-related coherent fields interacting with a moving atom[J]. Physica A, 2006, 365(2): 351-359.

[28] AN X Q, SHAO B, ZOU J. Entropy exchange and entanglement of an in motion two-level atom with a quantized field[J]. Chaos, Solitons and Fractals, 2008, 37(3): 835-841.

[29] ABDEL-KHALEK S. The effect of atomic motion and two-quanta JCM on the information entropy[J]. Physica A, 2008, 387(4): 779-786.

[30] SCHLICHER R R. Jaynes-Cummings model with atomic motion[J]. Optics Communications, 1989, 70(2): 97-102.

[31] JOSHI A, LAWANDE S V. Effect of atomic motion on Rydberg atoms undergoing two-photon transitions in a lossless cavity[J]. Physical Review A, 1990, 42(3): 1752-1756.

[32] SARGENT M III, SCULLY M O, LAMB W E. Laser physics[M]. Addison-Wesley, Reading, MA, 1974.

[33] REKDAL P K, SKAGERSTAMSS B K, KNIGHT P L. On the preparation of pure states in resonant microcavities[J]. Journal of Modern Optics, 2004, 51(1): 75-84.

[34] EL-ORANY F A A. Relationship between the linear entropy, the von Neumann entropy and the atomic Wehrl entropy for the Jaynes-Cummings model[DB/OL].(2007-05-30)[2013-04-11].http://arxir.org/abs/0705.4373.

[35] GERRY C C, KNIGHT P L. Quantum superpositions and Schrdinger cat states in quantum optics[J]. American Journal of Physics, 1997, 65(10): 964-974.

[36] MONROE C, MEEKHOF D M, KING B E, et al. A Schrdinger cat superposition state of an atom[J]. Science, 1996, 272(5265): 1131-1136.

[37] STOLER D. Equivalence classes of minimum uncertainty packets[J]. Physical Review D, 1970, 1(12): 3217-3219.

[38] STOLER D. Equivalence classes of minimum-uncertainty packets. II[J]. Physical Review D, 1970, 4(6): 1925-1926.

[39] YUEN H P. Two-photon coherent states of the radiation field[J]. Physical Review A, 1976, 13(6): 2226-2243.

[40] LOUDON R, KNIGHT P L. Squeezed light[J]. Journal of Modern Optics, 1987, 34(6): 709-759.

[41] WU L A, KIMBLE H J, HALL J L, et al. Generation of squeezed states by parametric down conversion[J]. Physical Review Letters, 1986, 57(20): 2520-2523.

[42] WHEELER J A. Franck-condon effect and squeezed-state physics as double-source interference phenomena[J]. Letters in Mathematical Physics, 1985, 10(2-3): 201-206.

[43] SCHLEICH W, WHEELER J A. Oscillations in photon distribution of squeezed states[J]. JOSA B, Optical physics, 1987, 4(10): 1715-1722.

[44] SCHLEICH W, WHEELER J A. Oscillations in photon distribution of squeezed states and interference in phase space[J]. Nature, 1987, 326: 574-577.

[45] SCHLEICH W, WALLS D F, WHEELER J A. Area of overlap and interference in phase space versus Wigner pseudoprobabilities[J]. Physical Review A, 1988, 38(3): 1177-1186.

廖庆洪, 鄢秋荣, 刘晔, Muhammad Ashfaq Ahmad. 运动原子和不同初始场相互作用系统中熵和纠缠的研究[J]. 光子学报, 2013, 42(10): 1248. LIAO Qing-hong, YAN Qiu-rong, LIU Ye, Muhammad Ashfaq Ahmad. Entropy and Entanglement of a Moving Atom Interacting with Different Initial Fields[J]. ACTA PHOTONICA SINICA, 2013, 42(10): 1248.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!