光子学报, 2014, 43 (9): 0906003, 网络出版: 2014-10-23   

液芯高双折射率光子晶体光纤的特性研究

Investigation of a Liquid-core Photonic Crystal Fiber with High Birefringence
作者单位
北京交通大学 理学院激光所, 北京 100044
摘要
设计了一种纤芯区域由中心椭圆缺陷孔和其横排的上下两侧椭圆孔组成的高双折射率光子晶体光纤, 并在其纤芯中心椭圆缺陷孔中填充高折射率液体物质二硫化碳.利用有限元法分析了该光子晶体光纤的双折射率、功率限制因子、模场分布及色散系数特性.研究结果表明: 液芯光纤具有较高的纤芯功率限制因子, 在波长0.6~1.6 μm范围内实现了宽带大负色散系数, 在波长1.55 μm处光纤双折射率达到了6.8×10-2, 即该结构液芯光子晶体光纤同时实现了宽带大负色散和高双折射率特性.通过结构参量容差性分析得到该光纤具有较好的偏振稳定性.
Abstract
A kind of highly birefringent Photont Crystal Fiber (PCF) was proposed, a central defect elliptical hole and two other elliptical holes just below and above the central one were introduced in the core region of PCF. The central defect elliptical air hole was filled with high refractive index of liquid such as carbon disulfide. The birefringence, power confinement factor, fundament mode field and dispersion characteristic of the fiber were studied by the full-vector finite element method. The results show that the liquid-core PCF has high power confinement factor, the high negative dispersion is realized in a wavelength range from 0.6 to 1.8 μm, and the birefringence up to 6.8×10-2 at 1.55 μm.The proposed PCF has achieved both the high birefrigence and broadband high negative dispersion characteristics, and showes good polarization stability by analyzing stucutural parameter fluctuation.
参考文献

[1] KNIGHT J C, RUSSELL P St J. New ways to guide light[J]. Science, 2002, 296(5566): 276-277.

[2] 张亚妮, 任立勇, 王丽莉, 等. 高双折射光子晶体保偏光纤研究进展[J]. 量子电子学报, 2006, 23(5):577-582.

    ZHANG Ya-ni, REN Li-yong, WANG Li-li, et al. Progress in the study of high birefringence polarization maintained photonic crystal fibers[J].Chinese Journal Quantum Electronics, 2006, 23(5): 577-582.

[3] 张晓娟, 赵建林, 方亮. 一种高双折射光子晶体光纤的脉冲俘获分析[J].光子学报, 2011, 40(4): 1154-1160.

    ZHANG Xiao-juan, ZHAO Jian-jin, FANG Liang. Analysis of pulse trapping charactistic in highly birefringent photonic crystal fiber[J]. Acta Photonica Sinica, 2011, 40(4): 1154-1160.

[4] 姜莺, 曾捷, 梁大开, 等. 基于监测波峰对积分的双折射光子晶体光纤环境轴向应变传感器研究[J].光谱学与光谱分析, 2013, 33(12): 3273-3277.

    JIANG Ying, ZENG Jie, LIANG Da-kai, et al. Study on the axial strain sensor of birefringence photonic crystal fiber loop mirror based on the absolute integral of the monitoring peak[J]. Spectroscopy and Spectral Analysis, 2013, 33(12): 3273-3277.

[5] 张明明, 马秀荣, 曹晔, 等. 高双折射光子晶体光纤研究[J].光子学报, 2008, 37(6):1126-1129.

    ZHANG Ming-ming, MA Xiu-rong, CAO Yue, et al. Study on high birefringence photonic crystal fiber[J]. Acta Photonica Sinica, 2008, 37(6): 1126-1129.

[6] 李德月, 周桂耀, 夏长明, 等. 高非线性高双折射光子晶体光纤特性的理论研究[J].中国激光, 2012, 39(11): 1105003-1-6.

    LI De-yue, ZHOU Gui-yao, XIA Chang-ming, et al. Theoretical investigation of photonic crystal fiber with highly nonlinear and birefringent[J].Chinese Journal of Lasers, 2012, 39(11): 1105003-1-6.

[7] 何忠蛟. 矩形孔光子晶体光纤[J].光子学报, 2011, 40(4): 583-586.

    HE Zhong-jiao. Rectangular-hole photonic crystal fibers[J]. Acta Photonica Sinica, 2011, 40(4): 583-586.

[8] ZHANG Ya-ni. Design and optimization of high-birefringence low-loss crystal fiber with two zero-dispersion wavelengths for nonlinear effects[J]. Applied Optics, 2011, 50(25): 125-130.

[9] YUE Yang, KAI Gui-yun, WANG Zhi, et al. Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice[J]. Optics Letters, 2007, 32(5): 469-471.

[10] CHEN Da-ru, SHEN Lin-fang. Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss[J]. IEEE Photonics Technology Letters, 2007, 19(4): 185-187.

[11] LIOU Jia-hong, HUANG Sheng-shuo, YU Chin-ping. Loss-reduced highly birefringent selectively liquid-filled photonic crystal fibers[J]. Optics Communications, 2009, 283(2010): 971-974.

[12] HAMEED M F O, OBAYYA S S A. Modal analysis of a novel soft glass photonic crystal fiber with liquid crystal core[J]. Journal of Lightwave Technology, 2012, 30(1): 96-102.

[13] SAMOC A. Dispersion of refractive properties of solvents: chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared[J]. Journal of Applied Physics, 2003, 94(9): 6167-6174.

[14] 姚建铨, 王然, 苗银萍, 等. 基于液体填充微结构光纤的新型光子功能器件[J].中国激光, 2013, 40(1): 0101002-1-11.

    YAO Jian-quan, WANG Ran, MIAO Yin-ping, et al. Novel photonic functional devices based on liquid-filling microstructured optical fibers[J]. Chinese Journal of Lasers, 2013, 40(1): 0101002-1-11.

[15] SZPULAK M, STATKIEWICZ G, OLSZEWSKI J, et al. Experimental and theoretical investigations of birefringent holey fibers with a triple defect[J].Applied Optics, 2005, 44(13): 2652-2658.

姜凌红, 郑义, 郑凯, 彭继迎. 液芯高双折射率光子晶体光纤的特性研究[J]. 光子学报, 2014, 43(9): 0906003. JIANG Ling-hong, ZHENG Yi, ZHENG Kai, PENG Ji-ying. Investigation of a Liquid-core Photonic Crystal Fiber with High Birefringence[J]. ACTA PHOTONICA SINICA, 2014, 43(9): 0906003.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!