光电工程, 2019, 46 (2): 180269, 网络出版: 2019-03-17   

基于非均匀划分的机车走行部三维点云精简

Simplification of locomotive running gear three-dimensional point cloud based on non-uniform division
作者单位
西南交通大学物理科学与技术学院光电工程研究所,四川成都 610031
摘要
激光线结构光扫描仪得到的三维点云数据具有冗余性,本文设计实现了一种基于两阶非均匀划分的点云精简算法对机车走行部数据进行处理。首先,根据内在形状特征算法估计出检测对象的点云法矢,并提取出点云特征点;其次,根据特征点云的分布对点云进行第一次非均匀划分,得到不均匀的初始点云块;最后,将划分后的各点云块映射到不同的高斯球中进行进一步细分,在高斯球面上进行均值漂移聚类,提取出每个聚类簇在实际三维空间中的重心,重心的集合即为精简结果。实验证明了方法的有效性,相比于现有的方法,本文中的方法在保证精度的前提下能够达到很高的精简率和运算效率,更契合机车自动化在线检测的需要。
Abstract
The 3D point cloud data obtained from the laser line structured light scanner has redundancy,and a point cloud simplification algorithm based on the two order non-uniform partition is designed and implemented to deal with locomotive running department in this paper. First, according to the intrinsic shape signature (ISS), the point cloud normal vector of the detected object are estimated and the feature points of the point cloud are extracted. Then, according to the distribution of the feature point cloud, the point cloud is first divided non-uniformly to obtain uneven initial cloud patches. Finally, the divided cloud points are mapped to different Gaussian spheres for further subdivi-sion. The mean shift clustering is performed on the Gauss sphere to extract the center of gravity of each cluster in the actual three-dimensional space. The set of the center of gravity is the result of simplification. Experimental results verified the effectiveness of the proposed method. It can keep the details information of the point cloud while en-suring a high simplification rate. Comparing with the existing method, this method balances the speed and accuracy, and is more suitable for the on-line locomotive automated detection system.
参考文献

[1] Pendry J B. Negative refraction makes a perfect lens[J]. Phys-ical Review Letters, 2000, 85(18): 3966–3969.

[2] Zhang Z L, Zhu J G, Zhou H. Guidance tracking method of a new automatic laser theodolite system[J]. Opto-electronic En-gineering, 2010, 37(4): 1–7. 张滋黎, 邾继贵, 周虎, 等. 一种新型自动激光经纬仪引导跟踪方法[J].光电工程, 2010, 37(4): 1–7.

[3] Yamamoto S. Development of inspection robot for nuclear power plant[C]//Proceedings of the 1992 IEEE International Conference on Robotics and Automation, Nice, France, 1992, 2: 1559–1566.

[4] Wang G H, Hu Z Y,Wu F C, et al. Implementation and experi-mental study on fast object modeling based on multiple struc-tured stripes[J]. Optics and Lasers in Engineering, 2004, 42(6): 627–638.

[5] Long X, Zhong Y X, Li R J, et al. 3-D surface integration in structured light 3-D scanning[J]. Journal of Tsinghua University (Science and Technology), 2002, 42(4): 477–480. 龙玺, 钟约先, 李仁举, 等. 结构光三维扫描测量的三维拼接技术[J].清华大学学报(自然科学版), 2002, 42(4): 477–480.

[6] Huang Q, Wang Z Y, Li J L, et al. Automatic recognition of bolts on locomotive running gear based on laser scanner 3D mea-surement[J]. Opto-electronic Engineering, 2018, 45(1): 170532.黄潜, 王泽勇, 李金龙, 等. 基于三维扫描的机车走行部螺栓识别与定位[J].光电工程, 2018, 45(1): 170532.

[7] Maglo A, Courbet C, Alliez P, et al. Progressive compression of manifold polygon meshes[J]. Computers & Graphics, 2012, 36(5): 349–359.

[8] Luebke D P. A developer’s survey of polygonal simpli.cation algorithms[J]. IEEE Computer Graphics and Applications, 2001, 21(3): 24–35.

[9] Cignoni P, Montani C, Scopigno R, et al. A comparison of mesh simpli.cation algorithms[J]. Computers & Graphics, 1998, 22(1): 37–54.

[10] Han H Y, Han X, Sun F S, et al. Point cloud simplification with preserved edge based on normal vector[J]. Optik -International Journal for Light and Electron Optics, 2015, 126(19): 2157–2162.

[11] Yu Z W, Wong H S, Peng H, et al. ASM: An adaptive simplifica-tion method for 3D point-based models[J]. Computer-Aided Design, 2010, 42(7): 598–612.

[12] Weir D J, Milroy M J, Bradley C, et al. Reverse engineering physical models employing wrap‐around B‐spline surfaces and quadrics[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 1996, 210(22): 147–157.

[13] Martin R, Stroud I, Marshall A D. Data reduction for reverse engineering[J]. RECCAD, Deliverable Document 1 COPER-NICUS Project, 1997, 1068: 85–100.

[14] The International Journal of Advanced Manufacturing Tech-nology, 2001, 18(3): 201–210.

    Lee K H, Woo H, Suk T. Point data reduction using 3D grids[J].

[15] Shi B Q, Liang J, Liu Q. Adaptive simplification of point cloud using k-means clustering[J]. Computer-Aided Design, 2011, 43(8): 910–922.

[16] Yuan X C, Wu L S, Chen H W. Feature preserving point cloud simplification[J]. Optics and Precision Engineering, 2015, 23(9): 2666–2676. 袁小翠, 吴禄慎, 陈华伟. 特征保持点云数据精简 [J].光学精密工程, 2015, 23(9): 2666–2676.

[17] Zhong Y. Intrinsic shape signatures: A shape descriptor for 3D object recognition[C]//Proceedings of the 2009 IEEE Interna-tional Conference on Computer Vision Workshops, 2009: 689–696.

[18] Fu S Y, Wu L S, Chen H W. Point cloud simplification method based on space grid dynamic partitioning[J]. Acta Optica Sinica, 2017, 37(11): 1115007.傅思勇, 吴禄慎, 陈华伟. 空间栅格动态划分的点云精简方法 [J].光学学报, 2017, 37(11): 1115007.

[19] Hoppe H, Derose T, Duchamp T, et al. Surface reconstruction from unorganized points[J]. ACM SIGGRAPH Computer Graphics, 1992, 26(2): 71–78.

[20] Wang Y H, Hao W, Ning X J, et al. Automatic segmentation of urban point clouds based on the Gaussian map[J]. The Photo-grammetric Record, 2013, 28(144): 342–361.

兰渐霞, 王泽勇, 李金龙, 黄潜, 高晓蓉. 基于非均匀划分的机车走行部三维点云精简[J]. 光电工程, 2019, 46(2): 180269. Lan Jianxia, Wang Zeyong, Li Jinlong, Huang Qian, Gao Xiaorong. Simplification of locomotive running gear three-dimensional point cloud based on non-uniform division[J]. Opto-Electronic Engineering, 2019, 46(2): 180269.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!