中国激光, 2015, 42 (7): 0702008, 网络出版: 2022-09-24   

短光纤延时自外差测量单频激光器频率漂移

Frequency Drift Measurement on Single-Frequency Laser by Short Fiber Delayed Self-Heterodyne
作者单位
1 中国科学院电子学研究所, 北京 100190
2 中国科学院大学, 北京 100049
摘要
基于光纤延时自外差和相位解缠绕技术,提出了一种采用较短的光纤延时线测量单频激光器输出激光频率漂移的方法。从理论上给出了该测量方法的工作原理并分析了测量精度的影响因素;利用一台频率变化可知的激光器对该方法进行了实验验证,实验结果表明该方法能够准确测量激光频率随时间的实际变化曲线;基于此方法,采用6 m 的光纤延时线,对一台1550 nm 波长的单频激光器频率漂移特性进行了3 h 连续测量,得到该激光器长期频率漂移结果为75 MHz/h,与其频率稳定度出厂指标50 MHz/h基本相符。
Abstract
Based on delayed self-heterodyne and phase unwrapping techniques, a new approach to measure the frequency drift of a single-frequency laser by adopting relatively shorter fiber delay lines is proposed. The working principle and factors affecting the measurement accuracy of this method are given in theory. A laser that we can get the function of the frequency fluctuation easily is used to test the presented method. The experimental result demonstrates that the actual curve between laser frequency and time can be acquired accurately by this method. Then the frequency drift characteristic of a 1550 nm wavelength laser is measured by this method with a 6 m fiber delay line in 3 h continuously, resulting in the long-term frequency drift of 75 MHz/h, which is consistent basically with the nominal frequency stability 50 MHz/h.
参考文献

[1] Lei Ming, Feng Lishuang, Zhi Yinzhou, et al.. Current modulation technique used in resonator micro-optic gyro[J]. Appl Opt, 2013, 52(2): 307-313.

[2] Zhou Xiaolin, Kong Dongsong, Zhong Qingzhi, et al.. Development of doppler wind Lidar[J]. Journal of Atmospheric and Environmental Optics, 2007, 2(3): 161-168.

[3] Li Feifei, Wu Jin, Zhao Zhilong, et al.. Air coupled vibration detection of all-fiber laser Doppler vibrometer[J]. High Laser and Partical Beams, 2012, 24(11): 2549-2554.

[4] Wu Zhanjun, Han Fengshan, Fan Zhe, et al.. Triple-beam laser doppler velocimeter based on Janus configuration[J]. Laser & Optoelectronics Progress, 2013, 50(7): 071404.

[5] Zhang Dejin, Li Qingquan, He Li. A new method for laser rut depth measurement[J]. Acata Optica Sinica, 2013, 33(1): 0112005.

[6] Zheng Yang, Jiang Huilin, Tong Shoufeng, et al.. Establishment of space light mixer mathematical model based on the space coherent laser communication[J]. Acata Optica Sinica, 2013, 33(7): 0706024.

[7] Sun Xutao, Liu Jiqiao, Zhou Jun, et al.. Frequency stabilization of a single-frequency all-solid-state laser for Doppler wind lidar[J]. Chin Opt Lett, 2008, 6(9): 679-680.

[8] Jin Zhonghe, Yu Xuhui, Ma Huilian. Resonator fiber optic gyro employing a semiconductor laser[J]. Appl Opt, 2012, 51(15): 2856-2864.

[9] Liu Tao, Ma Xiurong, Zhang Shuanggen, et al.. Measurement of frequency stability of two independent lasers with the same model[J]. Chinese J Lasers, 2012, 39(4): 0408006.

[10] Cao Xiangke, He Yao, Zhang Rongzhu. Experiment on beat frequency of two independent different type of lasers[J]. Chinese J Lasers, 2009, 36(2): 284-289.

[11] Zhang Yin, Wang Qing. Research of automatic frequency stability diode laser[J]. Chinese J Lasers, 2014, 41(6): 0602001.

[12] I Ozdur, M Akbulut, N Hoghooghi, et al.. A semiconductor-based 10-GHz optical comb source with sub 3 fs shot-noise-limited timing jitter and 500 Hz comb linewidth[J]. Photon Technol Lett, 2010, 22(6): 431-433.

[13] F Quinlan, S Ozharar, S Gee, et al.. Harmonically mode-locked semiconductor-based lasers as high repetition rate ultra-low noise pulse train and optical frequency comb sources[J]. Appl Opt, 2009, 11(10): 103001.

[14] S Uetake, K Matsubara, H Ito, et al.. Frequency stability measurement of a transfer-cavity-stabilized diode laser by using an optical frequency comb[J]. Appl Phys B, 2009, (97): 413-419.

[15] I Ozdur, D Mandridis, M U Piracha, et al.. Optical frequency stability measurement using an etalon-based optoelectronic oscillator [J]. Photon Technol Lett, 2011, 23(4): 263-265.

[16] Xu Pan, Hu Zhengliang, Ma Mingxiang, et al.. Mapping the optical frequency stability of the single-longitudinal-mode erbiumdoped fiber ring lasers with saturable absorber[J]. Opt & Laser Technol, 2013, 49: 337-342.

[17] T Okoshi, K Kikuchi, A Nakayama. Novel method for high resolution measurement of laser output spectrum[J]. Electron Lett, 1980, 16(16): 630-631.

[18] L E Richter, H I Mandelberg, M S Kruger, et al.. Linewidth determination from self-heterodyne measurements with subcoherence delay times[J]. Quantum Electron Lett, 1986, 22(11): 2070-2074.

[19] Jun Izawa, Hayato Nakajima, Hiroshi Hara, et al.. Comparison of lasing performance of Tm, Ho:YLF lasers by use of single and double cavities[J]. Appl Opt, 2000, 39(15): 2418-2421.

[20] Ju Youlun, Wang Zhenguo, Wang Lei, et al.. Short-term frequency instability measurement of 2 μm single longitudinal mode laser[J]. Acata Optica Sinica, 2008, 28(11): 2164-2168.

[21] Zhi Yinzhou, Feng Lishuang, Lei Ming. Delay self-heterodyne measurement of narrow linewith laser frequency drift characteristic[J]. Optik, 2014, 125(13): 3124-3126.

[22] Wang Chunhui, Gao Long, Pang Yajun, et al.. Experimental investigation for relation between beam splitter coefficient and signalto-noise ratio of 2 μm balanced coherent system[J]. Acta Optica Sinica, 2011, 31(11): 1104002.

[23] Xu Xianwen, Hong Guanglie, Ling Yuan, et al.. Simulative detection of vibration phase error of synthetic aperture lidar[J]. Acta Optica Sinica, 2011, 31(5): 0512001.

[24] SRM2519. High Resolution Wavelength Calibration Reference for 1530 nm~1565nm Hydrogen Cyanide H13C14N[OL]. http://www-s.nist.gov/srmors/certificates/2519a.pdf?.

段洪成, 吴谨, 赵志龙, 吴曙东. 短光纤延时自外差测量单频激光器频率漂移[J]. 中国激光, 2015, 42(7): 0702008. Duan Hongcheng, Wu Jin, Zhao Zhilong, Wu Shudong. Frequency Drift Measurement on Single-Frequency Laser by Short Fiber Delayed Self-Heterodyne[J]. Chinese Journal of Lasers, 2015, 42(7): 0702008.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!