红外与激光工程, 2018, 47 (11): 1113001, 网络出版: 2019-01-10   

天基大口径反射镜支撑技术的发展

Progress of support technique of space-based large aperture mirror
作者单位
北京空间机电研究所, 北京100094
摘要
为了满足人类对地观测和宇宙探索的更高性能要求, 空间望远镜反射镜口径已经从米级向十米量级迈进, 呈现不断增大的趋势。大口径反射镜支撑与反射镜面形精度和稳定性直接相关, 是决定空间望远镜实际观测能力乃至任务成败的关键技术之一。首先对大口径反射镜的三种主要支撑形式进行了介绍并做出适用性比较。在此基础上, 从影响反射镜支撑设计的各个因素出发, 讨论了反射镜支撑的设计原则。然后结合设计原则的讨论和国内外研究进展对支撑点数量和位置优化、无热化设计、无应力装配设计等大口径反射镜支撑关键技术及发展方向进行了探讨, 期望对我国大型空间望远镜的研制提供借鉴, 在新一轮空间探索热潮中实现跨越发展。
Abstract
To meet the higher demands of the earth and space observation, the aperture of space telescope mirror has took step to 10 m order of magnitude from 1 m with an ever-increasing trend. As a key technology for the space telescope, the large aperture mirror support is related directly to the surface shape accuracy and stability of the mirror, and crucial to the actual observation ability and even the success of the telescope mission. Three main forms of mirror support were discussed and their applicability were compared. The influential factors on the mirror mount design were summarized and based on this summary some key points and principles for support design were discussed. Combined with analysis on support technique research progress at home and abroad, the key techniques such as optimization on the number and location of support points, athermal design and un-stressed assembly and the trend of development were scrutinized. It is expected to provide reference for large space telescope of our country and thus promote leapfrog development in the new round of space exploration.
参考文献

[1] William R Oegerle. ATLAST-9.2 m: a large-aperture deployable space telescope[C]//SPIE 2010, 7731: 77312M.

[2] William R Arnold. Evolving design criteria for very large aperture space-based telescopes and their influence on the need for integrated tools in the optimization process[C]//SPIE, 2015, 9573: 95730G.

[3] 李宗轩, 金光, 张雷, 等. 3.5 m 口径空间望远镜单块式主镜技术展望[J]. 中国光学, 2014,7(4): 532-541.

    Li Zongxuan, Jin Guang, Zhang Lei, et al. Overview and outlook of monolithic primary mirror of spaceborne telescope with 3.5 m aperture[J]. Chinese Optics, 2014, 7(4): 532-541. (in Chinese)

[4] 朱俊青, 沙巍, 陈长征, 等. 空间长条形反射镜背部三支撑点的设置[J]. 光学 精密工程, 2015, 23(9): 2562-2569.

    Zhu Junqing, Sha Wei, Chen Changzheng, et al. Position layout of rear three points mounting for space rectangular mirror[J]. Optics and Precision Engineering, 2015, 23(9): 2562-2569. (in Chinese)

[5] 闫勇, 贾继强, 金光. 新型轻质大口径空间反射镜支撑设计[J]. 光学 精密工程, 2008, 16(8): 1533-1539.

    Yan Yong, Jia Jiqiang, Jin Guang. Design of new type spaceborne lightweighted primary mirror support[J]. Optics and Precision Engineering, 2008, 16(8): 1533-1539. (in Chinese)

[6] 徐宏, 关英俊. 空间相机1 m口径反射镜组件结构设计[J]. 光学 精密工程, 2013, 21(6): 1488-1495.

    Xu Hong, Guan Yingjun. Structural design of 1m diameter space mirror component of space camera [J]. Optics and Precision Engineering, 2013, 21(6): 1488-1495. (in Chinese)

[7] Yoder P R. 光机系统设计 [M]. 周海宪,程云芳, 译. 北京: 机械工业出版社, 2008.

    Yoder P R. Opto-Mechanical Systems Design [M]. Zhou Haixian, Cheng Yunfang, translated. Beijing: China Machine Press, 2008. (in Chinese)

[8] 张丽敏, 王富国, 安其昌, 等. Bipod柔性结构在小型反射镜支撑中的应用[J]. 光学 精密工程, 2015, 23(2): 438-443.

    Zhang Limin, Wang Fugao, An Qichang, et al. Application of Bipod to supporting structure of minitype reflector[J]. Optics and Precision Engineering, 2015, 23(2): 438-443. (in Chinese)

[9] 周宇翔, 沈霞. 空间反射镜背部双脚架柔性支撑结构设计[J]. 激光技术, 2017, 41(1): 142-145.

    Zhou Yuxiang, Shen Xia. Structure design of backside bipod flexure mount for space reflector[J]. Laser Technology, 2017, 41(1): 142-145. (in Chinese)

[10] Hom C, Irwin J W, Stubbs D M, et al. Design of bipod flexure mounts for the IRIS spectrometer[C]//SPIE, 2013, 8836: 88360Q.

[11] Kaercher Hans J, Peter Eisentraeger, Martin Sü. Mechanical principles of large mirror supports[C]//SPIE, 2010, 7733: 77332O.

[12] Curtis Baffes, Terry Mast. Primary mirror segmentation studies for the Thirty Meter Telescope[C]//SPIE, 2008, 7018: 70180S.

[13] Cayrel M. E-ELT optomechanics: overview [C]//SPIE, 2012, 8444: 84441X.

[14] Bittner H, Erdmann M, Haberler P. SOFIA primary mirror assembly: structural properties and optical performance [C]//SPIE, 2003, 4857: 266-273.

[15] Sean C Casey. The SOFIA program: astronomers return to the stratosphere [C]//SPIE, 2006, 6267: 62670Q.

[16] Paul Keas, Rick Brewster. SOFIA Telescope modal survey test and test-model correlation [C]//SPIE, 2010, 7738: 77380K.

[17] Charlie Atkinson, Scott Texter. Status of the JWST optical telescope element[C]//SPIE, 2006, 6265: 62650T.

[18] 凯斯·B·道尔, 维克托·L·基恩伯格, 格雷戈里·J·迈克尔斯. 光机集成分析[M]. 第2版. 连华东, 王小勇, 徐鹏, 译. 北京: 国防工业出版社, 2015.

    Doyle K B, Genberg V L, Michaels G J. Integrated Optomechanical Analysis [M]. 2nd ed. Lian Huadong, Wang Xiaoyong, Xu Peng, translated. Beijing: National Defense Industry Press, 2015. (in Chinese)

[19] Nelson J E, Lubliner J, Mast T S. Telescope mirror supports: plate deflection on point supports [C]//SPIE, 1982, 332: 212-228.

[20] Cho M K, Richard R M, Vukobratovich D. Optimum mirror shapes and supports for light weight mirrors subjected to self-weight [C]//SPIE, 1989, 1167: 2-19.

[21] William R Arnold, Matthew Fitagerald, Rubin Jaca Rosa, et al. Next generation lightweight mirror modeling software[C]//SPIE, 2013, 8836: 883601.

[22] William R Arnold, Ryan M Bevan, H Philip Stahl. Integration of mirror design with suspension system using NASA′s new mirror modeling software[C]//SPIE, 2013, 8836: 88360J.

[23] William R Arnold. Recent updates to the Arnold Mirror Modeler and integration into the evolving NASA overall design system for large space-based optical systems[C]//SPIE, 2015, 9573: 95730H.

[24] 范磊, 杨洪波, 张景旭, 等. 2 m SiC反射镜拱形轻量化结构设计[J]. 光电工程, 2010, 37(10): 71-76.

    Fan Lei, Yang Hongbo, Zhang Jingxu, et al. Lightweight design for 2 m SiC arch mirror [J]. Opto-Electronic Engineering, 2010, 37(10): 71-76. (in Chinese)

[25] 耿麒先, 杨洪波, 李延伟. 大口径平背形主镜背部支撑位置优化计算方法[J]. 光学技术, 2007, 33(6): 889-895.

    Geng Qixian, Yang Hongbo, Li Yanwei. Optimum method of backside support position for large-aperture primary mirror with flat rear surface[J]. Optical Technology, 2007, 33(6): 889-895. (in Chinese)

[26] 王书新, 李景林, 张帆, 等. 响应面模型的大口径空间反射镜优化[J]. 红外与激光工程, 2013, 42(S2): 291-297.

    Wang Shuxin, Li Jinglin, Zhang Fan, et al. Optimization of large aperture space reflector based on RSM [J]. Infrared and Laser Engineering, 2013, 42(S2): 291-297. (in Chinese)

[27] Ding Ke, Qi Bo, Bian Jiang. Integrated opto-mechanical optimization analysis of large-aperture primary mirror′s support position[C]//SPIE, 2016, 9682: 968213.

[28] 王克军, 董吉洪, 宣明, 等. 空间遥感器大口径反射镜的复合支撑结构[J]. 光学 精密工程, 2016, 24(7): 1719-1730.

    Wang Kejun, Dong Jihong, Xuan Ming, et al. Compound support structure for large aperture mirror of space remote sensor[J]. Optics and Precision Engineering, 2016, 24(7): 1719-1730. (in Chinese)

[29] 兰斌, 杨洪波, 吴小霞, 等. Φ620 mm口径地基反射镜组件优化设计[J]. 红外与激光工程, 2017, 46(1): 0118001.

    Lan Bin, Yang Hongbo, Wu Xiaoxia, et al. Optimal design of Φ620 mm ground mirror assembly [J]. Infrared and Laser Engineering, 2017, 46(1): 0118001. (in Chinese)

[30] Colin Cunningham, Adrian Russell. Precision engineering for astronomy: historical origins and the future revolution in ground-based astronomy [J]. Phil Trans R Soc A, 2012, 370(1973): 3852-3886.

[31] Gelman A, Maliah E. Mechanism for passive thermal compensation in harsh environment[C]//SPIE, 2007, 6715: 671506.

[32] Virginia Ford, Rick Parks. Passive thermal compensation of the optical bench of the galaxy evolution explorer[C]//SPIE, 2004, 5528: 171-180.

[33] Yan Conglin, Liu Weilin, Wu Qinzhang. Design and analysis on a kind of primary reflector support structure based on thermal compensation principle[C]//SPIE, 2012, 8415: 841511.

[34] Bayar Mete. Lens barrel optomechanical design principles [J]. Optical Engineering, 1981, 20(2): 181-186.

[35] James J Herbert. Techniques for deriving optimal bondlines for athermal bonded mounts[C]//SPIE, 2006, 6288: 62880J.

[36] Christopher Monti. Athermal bonded mounts: Incorporating aspect ratio into a closed-form solution [C]//SPIE, 2007, 6665: 666503.

[37] 郭骏立, 安源,李宗轩, 等. 空间相机反射镜组件的胶结技术[J]. 红外与激光工程, 2016, 45(3): 0313002.

    Guo Junli, An Yuan, Li Zongxuan, et al. Bonding technique of mirror components in space camera[J]. Infrared and Laser Engineering, 2016, 45(3): 0313002. (in Chinese)

[38] 杨利伟, 李志来, 薛栋林. 结构胶固化收缩对反射镜面形影响的分析与试验[J]. 光学技术, 2014, 40(4): 307-312.

    Yang Liwei, Li Zhilai, Xue Donglin. Analysis and test for effect of structural adhesive shrinkage during curing on mirror surface [J]. Optical Technology, 2014, 40(4): 307-312. (in Chinese)

[39] 董得义, 李志来. 胶层固化对反射镜面形影响的仿真与试验[J]. 光学 精密工程, 2014, 22(10): 2698-2707.

    Dong Deyi, Li Zhilai. Simulation and experiment of influence of adhesive curing on reflective mirror surface[J]. Optics and Precision Engineering, 2014, 22(10): 2698-2707. (in Chinese)

[40] Doyle K B, Michels G J, Genberg V L. Athermal design of nearly incompressible bonds[C]//SPIE, 2002, 4771: 296-303.

[41] Wang Dong, Yan Yong, Jin Guang. Nonlinear analysis method for predicting optical surface deformations resulted from assembly process[C]//SPIE, 2010, 7654: 76540A.

张博文, 王小勇, 赵野, 杨佳文. 天基大口径反射镜支撑技术的发展[J]. 红外与激光工程, 2018, 47(11): 1113001. Zhang Bowen, Wang Xiaoyong, Zhao Ye, Yang Jiawen. Progress of support technique of space-based large aperture mirror[J]. Infrared and Laser Engineering, 2018, 47(11): 1113001.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!