发光学报, 2016, 37 (10): 1245, 网络出版: 2017-01-13  

基于有限元方法的有机场效应晶体管特性模拟与实验验证

Simulation and Experimental Verification of Organic Field Effect Transistor Characteristic Based on Finite Element Method
作者单位
天津理工大学 理学院, 天津 300384
摘要
采用有限元方法, 借助多物理场软件COMSOL模拟了底栅顶接触结构有机场效应晶体管电位和载流子浓度随源漏电压Vds的变化。模拟结果表明, 当固定栅压Vg=-10 V时, 改变Vds从0~-10 V, 对于电位分布, 从栅极到源漏电极竖直方向有渐进的变化, 而从源极到漏极的水平方向呈现由大到小明显的梯度变化。对于载流子浓度, 观察到沟道处从源极向漏极逐渐减少, 在靠近漏极的区域减少得尤为明显, 而当源漏电压等于栅极电压时, 产生夹断现象。进一步将模拟结果与实际制备的器件性能进行了对比, 模拟结果与实验数据所显示的分布趋势大体相同, 印证了模拟的合理性。由此表明, 采用模拟方法分析有机场效应晶体管的器件特性, 对于实际制备器件具有重要的指导意义。
Abstract
The distribution of potential and carrier density under various source drain voltage of organic field effect transistor with bottom-gate top-contact geometry was simulated using the multi-physical field software COMSOL on the basis of the finite element method. The potential has gradually changed from source electrode to gate electrode in the vertical direction with the increase of source drain voltage on the gate voltage Vg=-10 V and source drain voltage Vds in the range from 0 to -10 V, while the potential in the horizontal direction is even more obvious, which shows a gradient change from high to low. For the carrier density, the distribution of the carrier density reduces gradually from source electrode to drain electrode in the channel, and an evident reduction can be observed near the drain with the increase of source drain voltage. When the source drain voltage is equal to the gate voltage, the carrier density in the area reduces to a minimum and the phenomenon of pinch-off occurrs. Comparing the simulation results with the performance of devices, it is found that the simulation results have the same variation trend as that of the experimental data, which confirms the rationality of the simulation. In a word, it is instructive that the simulation method can be employed to analyze the characteristics of organic field effect transistor for the practical devices fabrication.
参考文献

[1] MEI J G, DIAO Y, APPLETON A L, et al.. Integrated materials design of organic semiconductors for field-effect transistors[J]. J. Am. Chem. Soc., 2013, 135(18):6724-6746.

[2] BILGILI A T, YARAIR M N, KANDAZ M, et al.. Nonperipheral tetra phthalocyanines bearing alkyl chain moiety; synthesis, characterization and fabrication of the OFET based on phthalocyanine[J]. Synth. Met., 2015, 206:33-41.

[3] WANG S H, KAPPL M, LIEBEWIRTH I, et al.. Organic field-effect transistors based on highly ordered single polymer fibers[J]. Adv. Mater., 2012, 24(3):417-20.

[4] FARAJI S, HASHIMOTO T, TURNER M L, et al.. Solution-processed nanocomposite dielectrics for low voltage operated OFETs[J]. Org. Electron., 2015, 17:178-183.

[5] LIENERTH P, FALL S, LVQUE, et al.. Improving the selectivity to polar vapors of OFET-based sensors by using the transfer characteristics hysteresis response[J]. Sens. Actuators B, 2016, 225:90-95.

[6] DADVAND A, LU J P, PY C, et al.. Inkjet printable and low annealing temperature gate-dielectric based on polymethylsilsesquioxane for flexible n-channel OFETs[J]. Org. Electron., 2016, 30:213-218.

[7] JURCHESCU O D, BAAS J, PALSTRA T T M. Effect of impurities on the mobility of single crystal pentacene[J]. Appl. Phys. Lett., 2004, 84(16):3061-1-5.

[8] GUNDLACH D J, KLAUK H, SHERAW C D, et al.. High-mobility, low voltage organic thin film transistors[C]. Proceedings of 1999 International Electron Devices Meeting, Washington, USA, 1999:111-114.

[9] 尹飞飞,徐征,赵谡玲,等. 有机薄膜晶体管直流电流-电压模型的研究[J]. 光电子·激光, 2013, 24(3):476-480.

    YIN F F, XU Z, ZHAO S L, et al.. Research on the DC current-voltage model for organic thin film transistor[J]. J. Optoelectron. Laser, 2013, 24(3):476-480. (in Chinese)

[10] 戴春雷. 有机场效应晶体管电路仿真模型的研究[D]. 南京:南京邮电大学, 2011.

    DAI C L. The Study of Organic Field-effect Transistors and The Circuit Simulation Model[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2011. (in Chinese)

[11] 张玲珑,滕支刚,钟传杰. 有机薄膜晶体管直流电流-电压模型研究[J]. 固体电子学研究与进展, 2014, 34(1):9-12.

    ZHANG L L, TENG Z G, ZHONG C J. Study of DC current-voltage model for OTFT[J]. Res. Prog. Solid State Electron., 2014, 34(1):9-12. (in Chinese)

[12] 石中玉.有机半导体MOS器件性质与模型的研究[D]. 长春:长春理工大学, 2012.

    SHI Z Y. Study on The Characteristics and Model of Organic Semiconductor MOS Device[D]. Changchun: Changchun University of Science and Technology, 2012. (in Chinese)

[13] BARNES J J, LOMAX R J. Finite- element methods in semiconductor device simulation[J]. IEEE Trans. Electron Dev., 1977, 24(8):1082-1089.

[14] SNOWDEN C M. Semiconductor device modeling[J]. Rep. Prog. Phys., 1985, 48(2):223-275.

[15] 李开泰,黄艾香,黄庆怀. 有限元法及其应用[M]. 西安:西安交通大学出版社, 1984.

    LI K T, HUANG A X, HUANG Q H. The Finite Element Method and Application[M]. Xian: Xian Jiao Tong University Press, 1984.(in Chinese)

[16] 张成文. 基于有限元方法的有机薄膜晶体管模拟[D]. 沈阳:辽宁大学, 2012.

    ZHANG C W. The Simulation of Organic Thin-film Transistor Based on The Finite Element Method[D]. Shenyang: Liaoning University, 2012. (in Chinese)

[17] 陈跃宁. 有机薄膜晶体管工作机理及制备方法的研究[D]. 北京:北京交通大学, 2014.

    CHEN Y N. Study on The Operating Mechanism and Fabrication of Organic Thin Film Transistors[D]. Beijing: Beijing Jiaotong University, 2014. (in Chinese)

[18] 马慧, 王刚. COMSOL Multiphysics基本操作指南和常见问题解答[M]. 北京:人民交通大学出版社, 2009.

    MA H, WANG G. The Basic Operational Guidelines and The Answer to Common Problems of Multiphysics COMSOL[M]. Beijing: Peoples Communications University Press, 2009. (in Chinese)

王倩, 吴仁磊, 吴峰, 程晓曼. 基于有限元方法的有机场效应晶体管特性模拟与实验验证[J]. 发光学报, 2016, 37(10): 1245. WANG Qian, WU Ren-lei, WU Feng, CHENG Xiao-man. Simulation and Experimental Verification of Organic Field Effect Transistor Characteristic Based on Finite Element Method[J]. Chinese Journal of Luminescence, 2016, 37(10): 1245.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!