Photonics Research, 2020, 8 (6): 06000852, Published Online: May. 7, 2020   

Sub-nanosecond-speed frequency-reconfigurable photonic radio frequency switch using a silicon modulator Download: 800次

Author Affiliations
1 Centre for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou 310058, China
2 Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, Zhoushan 316021, China
3 Engineering Research Center of Oceanic Sensing Technology and Equipment, Ministry of Education, Zhejiang University, Hangzhou 310000, China
4 e-mail: leimeng.zhuang@ieee.org
Copy Citation Text

Yiwei Xie, Leimeng Zhuang, Pengcheng Jiao, Daoxin Dai. Sub-nanosecond-speed frequency-reconfigurable photonic radio frequency switch using a silicon modulator[J]. Photonics Research, 2020, 8(6): 06000852.

References

[1] P. Hindle. The state of RF/microwave switches. Microwave J., 2010, 53: 20-36.

[2] P. Bacon, D. Fischer, R. Lourens. Overview of RF switch technology and applications. Microwave J., 2014, 57: 76-88.

[3] H. Emami, N. Sarkhosh. Reconfigurable microwave photonic in-phase and quadrature detector for frequency agile radar. J. Opt. Soc. Am. A, 2014, 31: 1320-1325.

[4] S. Pranonsatit, A. S. Holmes, I. D. Robertson, S. Lucyszyn. Single-pole eight-throw RF MEMS rotary switch. J. Microelectromech. Syst., 2006, 15: 1735-1744.

[5] G. M. Rebeiz, J. B. Muldavin. RF MEMS switches and switch circuits. IEEE Microw., 2001, 2: 59-71.

[6] Agilent, Understanding RF/Microwave Solid State Switches and Their Applications, Application Note (Agilent Technologies, 2010).

[7] J. Yao. Microwave photonics. J. Lightwave Technol., 2009, 27: 314-335.

[8] J. Capmany, D. Novak. Microwave photonics combines two worlds. Nat. Photonics, 2007, 1: 319-330.

[9] L. Zhuang, M. Hoekman, W. Beeker, A. Leinse, R. Heideman, P. Dijk, C. Roeloffzen. Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors. Laser Photon. Rev., 2013, 7: 994-1002.

[10] J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, S. Sales. Microwave photonic signal processing. J. Lightwave Technol., 2013, 31: 571-586.

[11] J. Ge, M. P. Fok. Ultra high-speed radio frequency switch based on photonics. Sci. Rep., 2015, 5: 17263.

[12] TsujiK.UeharaT., “Photonic generation of a phase-switchable ASK signal using orthogonal polarization modes of a single optical phase modulator,” in Opto-Electronics and Communications Conference (2017), paper s1257.

[13] W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, R. Baets. Silicon-on-insulator spectral filters fabricated with CMOS technology. IEEE J. Sel. Top. Quantum Electron., 2010, 16: 33-44.

[14] Y. Xie, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. Roeloffzen, K. J. Boller, A. J. Lowery. Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity. Nanophotonics, 2017, 7: 421-454.

[15] D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics, 2013, 7: 597-607.

[16] C. Doerr. Silicon photonic integration in telecommunications. Front. Phys., 2015, 3: 37.

[17] Y. Xie, L. Zhuang, A. J. Lowery. Silicon microring modulator-based RF mixer for millimeter-wave phase-coded signal generation. Opt. Lett., 2017, 42: 2742-2745.

[18] A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, M. Paniccia. High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express, 2007, 15: 660-668.

[19] A. E. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. Tern, T. Y. Liow. Review of silicon photonics foundry efforts. J. Sel. Top. Quantum Electron., 2014, 20: 405-416.

[20] M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, J. E. Bowers. Hybrid silicon photonic integrated circuit technology. J. Sel. Top. Quantum Electron., 2013, 19: 6100117.

[21] L. Zhuang, W. Beeker, A. Leinse, R. Heideman, P. van Dijk, C. Roeloffzen. Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure. Opt. Express, 2013, 21: 3114-3124.

[22] CoxC. H., Analog Optical Links (Cambridge University, 2004).

[23] MadsenC. K.ZhaoJ. H., Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).

[24] XieY.ZhuangL.BroekeR.WangQ.SongB.GengZ.LoweryA. J., “Compact 4 × 5 Gb/s silicon-on-insulator OFDM transmitter,” in Optical Fiber Communication (OFC) Conference (2017), paper W2A.9.

[25] H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, J. Yu. High speed silicon Mach-Zehnder modulator based on interleaved PN junctions. Opt. Express, 2012, 20: 15093-15099.

[26] X. Liu, W. Pan, X. Zou, D. Zheng, L. Yan, B. Luo. Frequency-doubling optoelectronic oscillator using DSB-SC modulation and carrier recovery based on stimulated Brillouin scattering. IEEE Photon. J., 2013, 5: 6600606.

[27] C. Zhang, S. Zhang, J. D. Peters, J. E. Bowers. 8 × 8 × 40 Gbps fully integrated silicon photonic network on chip. Optica, 2016, 3: 785-786.

Yiwei Xie, Leimeng Zhuang, Pengcheng Jiao, Daoxin Dai. Sub-nanosecond-speed frequency-reconfigurable photonic radio frequency switch using a silicon modulator[J]. Photonics Research, 2020, 8(6): 06000852.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!