红外与激光工程, 2017, 46 (9): 0920002, 网络出版: 2017-11-17  

光子带隙光纤准直器回波损耗研究

Return loss of photonic bandgap fibers collimator
作者单位
北京航空航天大学 仪器科学与光电工程学院, 北京 100191
摘要
研究了一种光子带隙光纤准直器。为了降低回波对光源的干扰, 通常光纤准直器的回波损耗不应低于60 dB。由于带隙光纤端面没有反射, 因此满足这一条件的带隙光纤准直器GRIN透镜入射面的倾斜角与普通光纤准直器不同。从高斯光束通过光学系统的一般模型出发, 利用矩阵光学和高斯光束耦合理论, 推导了光线传输矩阵。结合实际应用中光纤及GRIN透镜的参数, 仿真分析了尾纤与GRIN透镜之间的间距及GRIN透镜的参数对准直器回波损耗的影响。结果表明, 镀有增透膜时, 当光子带隙光纤准直器的GRIN透镜入射面倾角等于3°时, 回波损耗大于60 dB。研究结果对进行光子带隙光纤准直器的设计具有指导意义。
Abstract
A photonic bandgap fiber collimator was proposed. To reduce the interference of light power from the echo, the return loss of fiber collimator should exceed 60 dB. There was no reflection in photonic bandgap fiber end face, thus the beveled angle of GRIN lens of photonic bandgap fiber collimator and ordinary fiber collimator satisfied the criterion were different. Based on the theory of matrix optics and Gaussian-beam coupling, the transform matrix was deduced from the general model of Gaussian-beam through a complex optical system. With the practical parameters of photonic bandgap fiber and GRIN lens, the influence of the distance between fiber tail and GRIN lens and the influence of the parameter of the GRIN lens on return-loss were both stimulated and analyzed. The results show that the return loss exceed 60 dB when the beveled angle of GRIN lens was 3°. The results may direct the design of PBF collimator.
参考文献

[1] 林学煌. 光无源器件[M]. 北京: 人民邮电出版社, 1998: 164-171.

    Lin Xuehuang. Optical Passive Devices [M]. Beijing: Posts and Telecom Press, 1998: 164-171. (in Chinese)

[2] 田燕宁, 方强, 王永昌. 双通道光环形器结构的设计及理论分析[J]. 中国激光, 2004, 31(11): 1398-1402.

    Tian Yanning, Fang Qiang, Wang Yongchang. Structure and characteristics of a double function optical circulator with double fiber tip and lens twice[J]. Chinese Journal of Lasers, 2004, 31(11): 1398-1402. (in Chinese).

[3] 禹培栋, 王国忠, 陈明华, 等. 光开关技术进展[J]. 半导体光电, 2001, 22(3):149-154.

    Yu Peidong, Wang Guozhong, Chen Minghua, et al. Recent progress in optical switching[J]. Semiconductor Optoelectronics, 2001, 22(3): 149-154. (in Chinese)

[4] 李彦, 孙彦凤, 宋镜明, 等. 空芯光子晶体光纤磁敏感性研究[J]. 红外与激光工程, 2014, 43(12): 4051-4055.

    Li Yan, Sun Yanfeng, Song Jingming, et al. Magnetic-field sensitivity of airi-core photonic crystal fiber[J]. Infrared and Laser Engineering, 2014, 43(12): 4051-4055. (in Chinese)

[5] 李晶, 王巍, 王学锋, 等. 光子晶体光纤陀螺标度因数特性研究[J]. 红外与激光工程, 2014, 43(12): 4082-4087.

    Li Jing, Wang Wei, Wang Xuefeng, et al. Scale factor of photonic crystal fiber-optic gyroscope[J]. Infrared and Laser Engineering, 2014, 43(12): 4082-4087. (in Chinese)

[6] Kim H, Kim J, Paek U C, et al. Tunable photonic crystal fiber coupler based on a side-polish technique[J]. Opt Lett, 2004, 29(11): 1194-1196.

[7] Jaroszewicz L R, Stasiewicz A K, Marc P, et al. Broadband photonic crystal fiber coupler with polarization selection of coupling ratio [C]//SPIE, 2010, 7653: 76533W.

[8] 王素芹, 阮玉, 殷东亮, 等. C-lens准直器回波损耗的理论计算与分析[J]. 大气与环境光学学报, 2003, 16(1): 24-28.

    Wang Suqin, Ruan Yu, Yin Dongliang, et al. The calculation and analizing of the RL of C-lens collimator[J]. Journal of Atmospheric and Environmental Optics, 2003, 16(1): 24-28. (in Chinese)

[9] 张虎. 空芯光子带隙光纤的结构设计和特性研究[D]. 北京: 北京邮电大学, 2009.

    Zhang Hu. Structure design and property research of hollow-core photonic bandgap fibers[D]. Beijing: Beijing University of Posts and Telecommunications, 2009. (in Chinese)

[10] Hirooka T, Hori Y, Nakazawa M. Gaussian and Sech approximations of mode field profiles in photonic crystal fibers[J]. IEEE Photonics Techonol Lett, 2004, 16(4): 1071-1073.

[11] Dangui Vinayak, Digonnet M J, Kino G S. Determination of the modal reflection coefficients in air-core photonic-bandgap fiber terminations[C]//Conference on Lasers and Electro-Optics, 2006 and 2006 Quantum Electronics and Laser Science Conference, 2006: 1-2.

李彦, 赵远, 徐小斌, 蔡伟. 光子带隙光纤准直器回波损耗研究[J]. 红外与激光工程, 2017, 46(9): 0920002. Li Yan, Zhao Yuan, Xu Xiaobin, Cai Wei. Return loss of photonic bandgap fibers collimator[J]. Infrared and Laser Engineering, 2017, 46(9): 0920002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!