激光与光电子学进展, 2019, 56 (20): 202408, 网络出版: 2019-10-22   

几何相位电磁超表面:从原理到应用 下载: 5207次特邀综述

Geometric-Phase Metasurfaces: from Physics to Applications
作者单位
1 上海大学特种光纤与光接入网重点实验室, 上海 200444
2 复旦大学物理学系应用表面物理国家重点实验室, 上海 200433
引用该论文

胡中, 徐涛, 汤蓉, 郭会杰, 肖诗逸. 几何相位电磁超表面:从原理到应用[J]. 激光与光电子学进展, 2019, 56(20): 202408.

Zhong Hu, Tao Xu, Rong Tang, Huijie Guo, Shiyi Xiao. Geometric-Phase Metasurfaces: from Physics to Applications[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202408.

参考文献

[1] Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 1996, 76(25): 4773-4776.

[2] Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084.

[3] Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 2000, 84(18): 4184-4187.

[4] Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials[J]. Nature Photonics, 2011, 5(9): 523-530.

[5] Shalaev V M. Optical negative-index metamaterials[J]. Nature Photonics, 2007, 1(1): 41-48.

[6] Shelby R A, Smith D R. Nemat-Nasser S C, et al. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial[J]. Applied Physics Letters, 2001, 78(4): 489-491.

[7] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969.

[8] Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534-537.

[9] Liu Z W, Lee H, Xiong Y, et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects[J]. Science, 2007, 315(5819): 1686.

[10] Ziolkowski R W, Heyman E. Wave propagation in media having negative permittivity and permeability[J]. Physical Review E, 2001, 64(5): 056625.

[11] Pendry J B. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780-1782.

[12] Leonhardt U. Optical conformal mapping[J]. Science, 2006, 312(5781): 1777-1780.

[13] EnghetaN.[\s]{1}Thin[\s]{1}absorbing[\s]{1}screens[\s]{1}using[\s]{1}metamaterial[\s]{1}surfaces[C]//IEEE[\s]{1}Antennas[\s]{1}and[\s]{1}Propagation[\s]{1}Society[\s]{1}International[\s]{1}Symposium[\s]{1}(IEEE[\s]{1}Cat.[\s]{1}No.02CH37313),[\s]{1}June[\s]{1}16-21,[\s]{1}2002,[\s]{1}San[\s]{1}Antonio,[\s]{1}TX,[\s]{1}USA.[\s]{1}New[\s]{1}York:[\s]{1}IEEE,[\s]{1}2002:[\s]{1}392-[\s]{1}395.[\s]{1}

[14] Tretyakov S A, Maslovski S I. Thin absorbing structure for all incidence angles based on the use of a high-impedance surface[J]. Microwave and Optical Technology Letters, 2003, 38(3): 175-178.

[15] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402.

[16] Landy N I, Bingham C M, Tyler T, et al. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging[J]. Physical Review B, 2009, 79(12): 125104.

[17] Liu X L, Starr T, Starr A F, et al. Infrared spatial and frequency selective metamaterial with near-unity absorbance[J]. Physical Review Letters, 2010, 104(20): 207403.

[18] Hao J M, Yuan Y, Ran L X, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials[J]. Physical Review Letters, 2007, 99(6): 063908.

[19] Sun W J, He Q, Hao J M, et al. A transparent metamaterial to manipulate electromagnetic wave polarizations[J]. Optics Letters, 2011, 36(6): 927-929.

[20] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.

[21] Sun S L, He Q, Xiao S Y, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426-431.

[22] Ni X J, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 2012, 335(6067): 427.

[23] Sun S L, Yang K Y, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 2012, 12(12): 6223-6229.

[24] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): 1232009.

[25] Memarzadeh B, Mosallaei H. Array of planar plasmonic scatterers functioning as light concentrator[J]. Optics Letters, 2011, 36(13): 2569-2571.

[26] Aieta F, Genevet P, Kats M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(9): 4932-4936.

[27] Pors A, Nielsen M G, Eriksen R L, et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces[J]. Nano Letters, 2013, 13(2): 829-834.

[28] Pors A, Albrektsen O, Radko I P, et al. Gap plasmon-based metasurfaces for total control of reflected light[J]. Scientific Reports, 2013, 3: 2155.

[29] Pors A, Nielsen M G, Bernardin T, et al. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons[J]. Light: Science & Applications, 2014, 3(8): e197.

[30] Castellanos-Beltran M A, Irwin K D, Hilton G C, et al. . Amplification and squeezing of quantum noise with a tunable Josephson metamaterial[J]. Nature Physics, 2008, 4(12): 929-931.

[31] Lähteenmäki P, Paraoanu G S, Hassel J, et al. Dynamical Casimir effect in a Josephson metamaterial[J]. Proceedings of the National Academy of Sciences, 2013, 110(11): 4234-4238.

[32] Cui T J, Qi M Q, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218.

[33] Pu M B, Chen P, Wang C T, et al. Broadband anomalous reflection based on gradient low-Q meta-surface[J]. AIP Advances, 2013, 3(5): 052136.

[34] Li X, Xiao S Y, Cai B G, et al. Flat metasurfaces to focus electromagnetic waves in reflection geometry[J]. Optics Letters, 2012, 37(23): 4940-4942.

[35] Guo Y H, Wang Y Q, Pu M B, et al. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion[J]. Scientific Reports, 2015, 5: 8434.

[36] Bomzon Z, Biener G, Kleiner V, et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings[J]. Optics Letters, 2002, 27(13): 1141-1143.

[37] Shitrit N, Bretner I, Gorodetski Y, et al. Optical spin Hall effects in plasmonic chains[J]. Nano Letters, 2011, 11(5): 2038-2042.

[38] Yin X, Ye Z, Rho J, et al. Photonic spin Hall effect at metasurfaces[J]. Science, 2013, 339(6126): 1405-1407.

[39] Huang L L, Chen X Z, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4: 2808.

[40] Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312.

[41] Khorasaninejad M, Ambrosio A, Kanhaiya P, et al. Broadband and chiral binary dielectric meta-holograms[J]. Science Advances, 2016, 2(5): e1501258.

[42] Huang K, Dong Z G, Mei S T, et al. Silicon multi-meta-holograms for the broadband visible light[J]. Laser & Photonics Reviews, 2016, 10(3): 500-509.

[43] Wen D D, Yue F Y, Li G X, et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 2015, 6: 8241.

[44] Li X, Chen L W, Li Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2(11): e1601102.

[45] Song E Y, Lee S Y, Hong J, et al. A double-lined metasurface for plasmonic complex-field generation[J]. Laser & Photonics Reviews, 2016, 10(2): 299-306.

[46] Li L, Li T, Wang S M, et al. Plasmonic Airy beam generated by in-plane diffraction[J]. Physical Review Letters, 2011, 107(12): 126804.

[47] Zhou J X, Liu Y C, Ke Y G, et al. Generation of Airy vortex and Airy vector beams based on the modulation of dynamic and geometric phases[J]. Optics Letters, 2015, 40(13): 3193-3196.

[48] Song E Y, Lee G Y, Park H, et al. Compact generation of Airy beams with C-aperture metasurface[J]. Advanced Optical Materials, 2017, 5(10): 1601028.

[49] Aieta F, Kats M A, Genevet P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347(6228): 1342-1345.

[50] Wang S M, Wu P C, Su V C, et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8: 187.

[51] Wang S M, Wu P C, Su V C, et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3): 227-232.

[52] Miao Z Q, Wu Q, Li X, et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces[J]. Physical Review X, 2015, 5(4): 041027.

[53] Zhang L, Chen X Q, Liu S, et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 2018, 9: 4334.

[54] Pancharatnam S. Generalized theory of interference, and its applications[J]. Proceedings of the Indian Academy of Sciences - Section A, 1956, 44(5): 247-262.

[55] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1984, 392(1802): 45-57.

[56] Kang M, Feng T H, Wang H T, et al. Wave front engineering from an array of thin aperture antennas[J]. Optics Express, 2012, 20(14): 15882-15890.

[57] Huang L L, Chen X Z, Mühlenbernd H, et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 2012, 12(11): 5750-5755.

[58] Ling X H, Zhou X X, Yi X N, et al. Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence[J]. Light: Science & Applications, 2015, 4(5): e290.

[59] Biener G, Niv A, Kleiner V, et al. Formation of helical beams by use of Pancharatnam-Berry phase optical elements[J]. Optics Letters, 2002, 27(21): 1875-1877.

[60] Hasman E, Bomzon Z, Niv A, et al. Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures[J]. Optics Communications, 2002, 209(1/2/3): 45-54.

[61] Chen X Z, Huang L L, Mühlenbernd H, et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 2012, 3: 1198.

[62] Lin D, Fan P, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298-302.

[63] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194.

[64] Luo X G, Pu M B, Li X, et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light: Science & Applications, 2017, 6(6): e16276.

[65] Berkhout G C G, Lavery M P J, Courtial J, et al. . Efficient sorting of orbital angular momentum states of light[J]. Physical Review Letters, 2010, 105(15): 153601.

[66] Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313-316.

[67] Beijersbergen M W. Allen L, van der Veen H E L O, et al. Astigmatic laser mode converters and transfer of orbital angular momentum[J]. Optics Communications, 1993, 96(1/2/3): 123-132.

[68] Niv A, Gorodetski Y, Kleiner V, et al. Topological spin-orbit interaction of light in anisotropic inhomogeneous subwavelength structures[J]. Optics Letters, 2008, 33(24): 2910-2912.

[69] Karimi E. Schulz S A, de Leon I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light: Science & Applications, 2014, 3(5): e167.

[70] Genevet P, Yu N F, Aieta F, et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities[J]. Applied Physics Letters, 2012, 100(1): 013101.

[71] Chimento P F. Alkemade P F A, Hooft G W, et al. Optical angular momentum conversion in a nanoslit[J]. Optics Letters, 2012, 37(23): 4946-4948.

[72] Guo Y H, Pu M B, Zhao Z Y, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022-2029.

[73] Lu B R, Deng J N, Li Q, et al. Reconstructing a plasmonic metasurface for a broadband high-efficiency optical vortex in the visible frequency[J]. Nanoscale, 2018, 10(26): 12378-12385.

[74] Pu M B, Li X, Ma X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396.

[75] Ma X L, Pu M B, Li X, et al. A planar chiral meta-surface for optical vortex generation and focusing[J]. Scientific Reports, 2015, 5: 10365.

[76] Yue F Y, Wen D D, Xin J T, et al. Vector vortex beam generation with a single plasmonic metasurface[J]. ACS Photonics, 2016, 3(9): 1558-1563.

[77] Arbabi A, Faraon A. Fundamental limits of ultrathin metasurfaces[J]. Scientific Reports, 2017, 7: 43722.

[78] Ding X M, Monticone F, Zhang K, et al. Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency[J]. Advanced Materials, 2015, 27(7): 1195-1200.

[79] Pfeiffer C, Grbic A. Controlling vector Bessel beams with metasurfaces[J]. Physical Review Applied, 2014, 2(4): 044012.

[80] Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304-1307.

[81] Luo W J, Xiao S Y, He Q, et al. Photonic spin Hall effect with nearly 100% efficiency[J]. Advanced Optical Materials, 2015, 3(8): 1102-1108.

[82] Jiang S C, Xiong X, Hu Y S, et al. High-efficiency generation of circularly polarized light via symmetry-induced anomalous reflection[J]. Physical Review B, 2015, 91(12): 125421.

[83] Xiao S Y, He Q, Huang X Q, et al. Super imaging with a plasmonic metamaterial: role of aperture shape[J]. Metamaterials, 2011, 5(2/3): 112-118.

[84] Luo W J, Sun S L, Xu H X, et al. Transmissive ultrathin Pancharatnam-Berry metasurfaces with nearly 100% efficiency[J]. Physical Review Applied, 2017, 7(4): 044033.

[85] Mei Q Q, Tang W X, Cui T J. A broadband Bessel beam launcher using metamaterial lens[J]. Scientific Reports, 2015, 5: 11732.

[86] Monnai Y, Jahn D, Withayachumnankul W, et al. Terahertz plasmonic Bessel beamformer[J]. Applied Physics Letters, 2015, 106(2): 021101.

[87] Cai B G, Li Y B, Jiang W X, et al. Generation of spatial Bessel beams using holographic metasurface[J]. Optics Express, 2015, 23(6): 7593-7601.

[88] Gao L H, Cheng Q, Yang J, et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces[J]. Light: Science & Applications, 2015, 4(9): e324.

[89] Berini P. Long-range surface plasmon polaritons[J]. Advances in Optics and Photonics, 2009, 1(3): 484-588.

[90] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

[91] Kim S, Jin J, Kim Y J, et al. High-harmonic generation by resonant plasmon field enhancement[J]. Nature, 2008, 453(7196): 757-760.

[92] Kauranen M, Zayats A V. Nonlinear plasmonics[J]. Nature Photonics, 2012, 6(11): 737-748.

[93] Nie S M, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 1997, 275(5303): 1102-1106.

[94] Anker J N, Hall W P, Lyandres O, et al. Biosensing with plasmonic nanosensors[J]. Nature Materials, 2008, 7(6): 442-453.

[95] Zhang S P, Bao K, Halas N J, et al. Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed[J]. Nano Letters, 2011, 11(4): 1657-1663.

[96] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 2010, 4(2): 83-91.

[97] Liu L, Han Z H, He S L. Novel surface plasmon waveguide for high integration[J]. Optics Express, 2005, 13(17): 6645-6650.

[98] Bozhevolnyi S I, Volkov V S, Devaux E, et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature, 2006, 440(7083): 508-511.

[99] Gorodetski Y, Nechayev S, Kleiner V, et al. Plasmonic Aharonov-Bohm effect: optical spin as the magnetic flux parameter[J]. Physical Review B, 2010, 82(12): 125433.

[100] Bliokh K Y, Gorodetski Y, Kleiner V, et al. Coriolis effect in optics: unified geometric phase and spin-Hall effect[J]. Physical Review Letters, 2008, 101(3): 030404.

[101] Gorodetski Y, Niv A, Kleiner V, et al. Observation of the spin-based plasmonic effect in nanoscale structures[J]. Physical Review Letters, 2008, 101(4): 043903.

[102] Cho S W, Park J, Lee S Y, et al. Coupling of spin and angular momentum of light in plasmonic vortex[J]. Optics Express, 2012, 20(9): 10083-10094.

[103] Kim H, Park J, Cho S W, et al. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens[J]. Nano Letters, 2010, 10(2): 529-536.

[104] Gorodetski Y, Shitrit N, Bretner I, et al. Observation of optical spin symmetry breaking in nanoapertures[J]. Nano Letters, 2009, 9(8): 3016-3019.

[105] Ohno T, Miyanishi S. Study of surface plasmon chirality induced by Archimedes’ spiral grooves[J]. Optics Express, 2006, 14(13): 6285-6290.

[106] Yang S Y, Chen W B, Nelson R L, et al. Miniature circular polarization analyzer with spiral plasmonic lens[J]. Optics Letters, 2009, 34(20): 3047-3049.

[107] Shen Z, Hu Z J, Yuan G H, et al. Visualizing orbital angular momentum of plasmonic vortices[J]. Optics Letters, 2012, 37(22): 4627-4629.

[108] Tsai W Y, Huang J S, Huang C B. Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic Archimedes spiral[J]. Nano Letters, 2014, 14(2): 547-552.

[109] Ku C T, Lin H N, Huang C B. Direct observation of surface plasmon vortex and subwavelength focusing with arbitrarily-tailored intensity patterns[J]. Applied Physics Letters, 2015, 106(5): 053112.

[110] Mueller J P B, Capasso F. Asymmetric surface plasmon polariton emission by a dipole emitter near a metal surface[J]. Physical Review B, 2013, 88(12): 121410.

[111] Lin J. Mueller J P B, Wang Q, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons[J]. Science, 2013, 340(6130): 331-334.

[112] Genevet P, Wintz D, Ambrosio A, et al. Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial[J]. Nature Nanotechnology, 2015, 10(9): 804-809.

[113] Du L P, Kou S S, Balaur E, et al. Broadband chirality-coded meta-aperture for photon-spin resolving[J]. Nature Communications, 2015, 6: 10051.

[114] Huang L L, Chen X Z, Bai B F, et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity[J]. Light: Science & Applications, 2013, 2(3): e70.

[115] Dahan N, Gorodetski Y, Frischwasser K, et al. Geometric Doppler effect: spin-split dispersion of thermal radiation[J]. Physical Review Letters, 2010, 105(13): 136402.

[116] Shitrit N, Maayani S, Veksler D, et al. Rashba-type plasmonic metasurface[J]. Optics Letters, 2013, 38(21): 4358-4361.

[117] Shitrit N, Yulevich I, Maguid E, et al. Spin-optical metamaterial route to spin-controlled photonics[J]. Science, 2013, 340(6133): 724-726.

[118] Shitrit N, Yulevich I, Kleiner V, et al. Spin-controlled plasmonics via optical Rashba effect[J]. Applied Physics Letters, 2013, 103(21): 211114.

[119] Yulevich I, Maguid E, Shitrit N, et al. Optical mode control by geometric phase in quasicrystal metasurface[J]. Physical Review Letters, 2015, 115(20): 205501.

[120] Xiao S Y, Zhong F, Liu H, et al. Flexible coherent control of plasmonic spin-Hall effect[J]. Nature Communications, 2015, 6: 8360.

[121] Zhang Z J, Luo J, Song M W, et al. Large-area, broadband and high-efficiency near-infrared linear polarization manipulating metasurface fabricated by orthogonal interference lithography[J]. Applied Physics Letters, 2015, 107(24): 241904.

[122] Kim J Y, Kim H, Kim B H, et al. Highly tunable refractive index visible-light metasurface from block copolymer self-assembly[J]. Nature Communications, 2016, 7: 12911.

[123] Chen W X, Tymchenko M, Gopalan P, et al. Large-area nanoimprinted colloidal Au nanocrystal-based nanoantennas for ultrathin polarizing plasmonic metasurfaces[J]. Nano Letters, 2015, 15(8): 5254-5260.

[124] Huang Y W, Chen W T, Tsai W Y, et al. Aluminum plasmonic multicolor meta-hologram[J]. Nano Letters, 2015, 15(5): 3122-3127.

[125] Montelongo Y. Tenorio-Pearl J O, Williams C, et al. Plasmonic nanoparticle scattering for color holograms[J]. Proceedings of the National Academy of Sciences, 2014, 111(35): 12679-12683.

[126] Zhang X H, Jin J J, Wang Y Q, et al. Metasurface-based broadband hologram with high tolerance to fabrication errors[J]. Scientific Reports, 2016, 6: 19856.

[127] Chen W T, Yang K Y, Wang C M, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J]. Nano Letters, 2014, 14(1): 225-230.

[128] Genevet P, Capasso F. Holographic optical metasurfaces: a review of current progress[J]. Reports on Progress in Physics, 2015, 78(2): 024401.

[129] Torner L, Torres J P, Carrasco S. Digital spiral imaging[J]. Optics Express, 2005, 13(3): 873-881.

[130] Monroe D. Focus: big twist for electron beam[J]. Physics, 2015, 8: 7.

[131] Oemrawsingh S S R, Eliel E R, et al. . Production and characterization of spiral phase plates for optical wavelengths[J]. Applied Optics, 2004, 43(3): 688-694.

[132] Chen L X, Lei J J, Romero J. Quantum digital spiral imaging[J]. Light: Science & Applications, 2014, 3(3): e153.

[133] Ghai D P, Senthilkumaran P, Sirohi R S. Single-slit diffraction of an optical beam with phase singularity[J]. Optics and Lasers in Engineering, 2009, 47(1): 123-126.

[134] Leach J, Padgett M J, Barnett S M, et al. Measuring the orbital angular momentum of a single photon[J]. Physical Review Letters, 2002, 88(25): 257901.

[135] Pors A, Nielsen M G, Bozhevolnyi S I. Plasmonic metagratings for simultaneous determination of Stokes parameters[J]. Optica, 2015, 2(8): 716-723.

[136] Wen D D, Yue F Y, Kumar S, et al. Metasurface for characterization of the polarization state of light[J]. Optics Express, 2015, 23(8): 10272-10281.

[137] Genevet P, Lin J, Kats M A, et al. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes[J]. Nature Communications, 2012, 3: 1278.

[138] Liu A P, Rui G H, Ren X F, et al. Encoding photonic angular momentum information onto surface plasmon polaritons with plasmonic lens[J]. Optics Express, 2012, 20(22): 24151-24159.

[139] Yang Y M, Wang W Y, Moitra P, et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J]. Nano Letters, 2014, 14(3): 1394-1399.

[140] Xu H X, Ma S J, Luo W J, et al. Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces[J]. Applied Physics Letters, 2016, 109(19): 193506.

[141] Li L L, Cui T J, Ji W, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8: 197.

[142] Chen K, Feng Y J, Monticone F, et al. A reconfigurable active Huygens' metalens[J]. Advanced Materials, 2017, 29(17): 1606422.

[143] Qu C, Ma S J, Hao J M, et al. Tailor the functionalities of metasurfaces based on a complete phase diagram[J]. Physical Review Letters, 2015, 115(23): 235503.

[144] Xu H X, Wang G M, Cai T, et al. Tunable Pancharatnam-Berry metasurface for dynamical and high-efficiency anomalous reflection[J]. Optics Express, 2016, 24(24): 27836-27848.

[145] Kim T T, Kim H, Kenney M, et al. Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces[J]. Advanced Optical Materials, 2018, 6(1): 1700507.

[146] Zhu W M, Song Q H, Yan L B, et al. A flat lens with tunable phase gradient by using random access reconfigurable metamaterial[J]. Advanced Materials, 2015, 27(32): 4739-4743.

[147] Balthasar Mueller J P, Rubin N A, Devlin R C, et al. . Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901.

[148] Zhang F, Pu M B, Luo J, et al. Symmetry breaking of photonic spin-orbit interactions in metasurfaces[J]. Opto-Electronic Engineering, 2017, 44(3): 319-325.

[149] Zhang F, Pu M B, Li X, et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions[J]. Advanced Functional Materials, 2017, 27(47): 1704295.

胡中, 徐涛, 汤蓉, 郭会杰, 肖诗逸. 几何相位电磁超表面:从原理到应用[J]. 激光与光电子学进展, 2019, 56(20): 202408. Zhong Hu, Tao Xu, Rong Tang, Huijie Guo, Shiyi Xiao. Geometric-Phase Metasurfaces: from Physics to Applications[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202408.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!