光学学报, 2013, 33 (11): 1131002, 网络出版: 2013-10-24  

厚度对磁流体薄膜场致双折射效应的影响

Influence of Sample Thickness on the Magnetic-Field-Induced Birefringence of the Nanostructured Magnetic Fluids
作者单位
上海理工大学理学院, 上海 200093
摘要
研究了不同浓度磁流体薄膜样品的厚度对其场致双折射的影响。结果表明,固定磁流体浓度时,其双折射随样品厚度的增加而减小,且厚度不同的样品,其双折射随磁场的增加的变化趋势不同。对于薄样品,其双折射随磁场的增加而逐渐增加直至趋于饱和,而对于厚样品,其双折射随磁场的增加呈现非单调或“振荡”变化的现象。磁流体的浓度对其双折射的厚度依赖特性具有明显的影响,浓度越高,其双折射随磁场的增加开始呈现非单调或“振荡”变化时所对应的样品厚度就越小。详细分析了薄膜样品厚度和磁流体浓度对其双折射影响的有关物理机制,并定义了转折磁场的概念进行了定量的研究。
Abstract
The influence of sample thickness of different concentration magnetic fluid on the magnetic-field-induced birefringence is studied. Experimental results show that the birefringence of magnetic fluid sample decreases with the thickness of magnetic fluid with certain concentration. The variation of birefringence with the externally magnetic field strength is different for samples with different thicknesses. For the thin sample, its birefringence increases gradually with the magnetic field and then saturates at relatively high magnetic field. For the thick sample, the birefringence varies non-monotonously or oscillates with the externally magnetic field. The magnetic fluid concentration has obvious influence on the thickness-dependence of the birefringence. The higher the concentration, the smaller the thickness of the sample for the occurrence of non-monotonous or oscillating variation of birefringence with magnetic field. The underlying physical mechanisms are clarified. The transition magnetic field is defined and employed to analyze the corresponding phenomena quantitatively.
参考文献

[1] R E Rosensweig. Ferrohydrodynamics [M]. Cambridge: Cambridge University Press, 1985.

[2] 卜胜利, 陈险峰. 纳米磁性液体的分散稳定性分析[J]. 上海理工大学学报, 2008, 30(4): 335-338.

    Pu Shengli, Chen Xianfeng. Dispersion stability requirements of the nanostructured magnetic liquid [J]. J Univ Shanghai Sci Technol, 2008, 30(4): 335-338.

[3] Wang Xufei, Shi Liqun. Polydispersity effects on the magnetization of diluted ferrofluids: a lognormal analysis [J]. Chin Phys B, 2010, 19(10): 107502.

[4] 卜胜利. 布朗运动对纳米磁流体电学特性的影响[J]. 上海理工大学学报, 2009, 31(6): 517-520.

    Pu Shengli. Influence of Brownian motion on the electrical properties of a nanostructured magnetic fluid [J]. J Univ Shanghai Sci Technol, 2009, 31(6): 517-520.

[5] A Józefczak, A Skumiel, M abowski. Effects of the sweep rate of the magnetic field on the changes of ultrasonic wave velocity in magnetic fluid [J]. J Magn Magn Mater, 2003, 258-259: 474-476.

[6] H Lee, A M Purdon, R M Westervelt. Manipulation of biological cells using a microelectromagnet matrix [J]. Appl Phys Lett, 2004, 85(6): 1063-1065.

[7] S Y Park, H Handa, A Sandhu. Magneto-optical biosensing platform based on light scattering from self-assembled chains of functionalized rotating magnetic beads [J]. Nano Lett, 2010, 10(2): 446-451.

[8] K T Wu, Y D Yao, C W Chang. Variations in optical transmittance with magnetic fields in nanosized FePt ferrofluids [J]. J Appl Phys, 2009, 105(7): 07B505.

[9] D Jamon, F Donatini, A Siblini, et al.. Experimental investigation on the magneto-optic effects of ferrofluids via dynamic measurements [J]. J Magn Magn Mater, 2009, 321(9): 1148-1154.

[10] H D Deng, J Liu, W R Zhao, et al.. Enhancement of switching speed by laser induced clustering of nanoparticles in magnetic fluids [J]. Appl Phys Lett, 2008, 92(23): 233103.

[11] J Philip, J M Laskar, B Raj. Magnetic field induced extinction of light in a suspension of Fe3O4 nanoparticles [J]. Appl Phys Lett, 2008, 92(22): 221911.

[12] 祖鹏, 向望华, 白扬博, 等. 一种新型的基于磁性液体的光纤Sagnac磁场传感器[J]. 光学学报, 2011, 31(8): 0806005.

    Zu Peng, Xiang Wanghua, Bai Yangbo, et al.. A novel fiber Sagnac magnetic field sensor based on magnetic fluid [J]. Acta Optica Sinica, 2011, 31(8): 0806005.

[13] 陆樟献, 王军, 夏肆华. 煤油基Fe3O4磁性液体薄层的光学特性研究 [J]. 光学学报, 2011, 31(2): 0216003.

    Lu Zhangxian, Wang Jun, Xia Sihua. Study on optical properties of kerosene-based Fe3O4 magnetic liquid film [J]. Acta Optica Sinica, 2011, 31(2): 0216003.

[14] S S Nair, J Thomas, C S S Sandeep, et al.. An optical limiter based on ferrofluids [J]. Appl Phys Lett, 2008, 92(17): 171908.

[15] P C Scholten. Magnetic measurements on particles in suspension [J]. IEEE Trans Magn, 1975, 11(5): 1400-1402.

[16] V Socoliuc, M Rasa, V Sofonea, et al.. Agglomerate formation in moderately concentrated ferrofluids from static magneto-optical measurements [J]. J Magn Magn Mater, 1999, 191(1-2): 241-248.

[17] P Zu, C C Chan, L W Siang, et al.. Magneto-optic fiber Sagnac modulator based on magnetic fluids [J]. Opt Lett, 2011, 36(8): 1425-1427.

[18] 王昊天, 卜胜利, 王宁. 基于磁流体热透镜效应的阈值可调光学限幅器的理论设计[J]. 光子学报, 2012, 41(9): 1009-1014.

    Wang Haotian, Pu Shengli, Wang Ning. Theoretical design of threshold-tunable optical limiters based on the thermal lens effect of magnetic fluids [J]. Acta Photonica Sinica, 2012, 41(9): 1009-1014.

[19] A K Bentley, A B Ellis, G C Lisensky, et al.. Suspensions of nickel nanowires as magneto-optical switches [J]. Nanotechnol, 2005, 16(10): 2193-2196.

[20] J P Llewellyn. Form birefringence in ferrofluids [J]. J Phys D: Appl Phys, 1983, 16(1): 95-104.

[21] S Taketomi. Magnetic fluid′s anomalous pseudo-Cotton Mouton effects about 107 times larger than that of nitrobenzene [J]. Jpn J Appl Phys, 1983, 22(7): 1137-1145.

[22] R W Chantrell, A Bradbury, S Menear. Birefringence of weakly interacting fine particles [J]. J Appl Phys, 1985, 57(8): 4268-4270.

[23] 卜胜利, 刘明, 孙国庆. 环境温度对纳米磁流体场诱导光学双折射的影响[J]. 光子学报, 2010, 39(10): 1742-1746.

    Pu Shengli, Liu Ming, Sun Guoqing. Influence of ambient temperature on the magnetic-field-induced birefringence of the nanostructured magnetic fluids [J]. Acta Photonica Sinica, 2010, 39(10): 1742-1746.

[24] 孙国庆, 卜胜利, 刘明, 等. 非磁性微球掺杂对纳米磁流体场诱导双折射特性的影响[J]. 光子学报, 2011, 40(5): 652-657.

    Sun Guoqing, Pu Shengli, Liu Ming, et al.. Influence of nonmagnetic microsphere doping on magnetic-field-induced birefringence of nanostructured magnetic fluids [J]. Acta Photonica Sinica, 2011, 40(5): 652-657.

[25] Wang Xiang, Pu Shengli, Ji Hongzhu, et al.. Enhanced magnetic-field-induced optical properties of nanostructured magnetic fluids by doping nematic liquid crystals [J]. Nanoscale Research Lett, 2012, 7: 249-255.

[26] C Y Hong. Field-induced structural anisotropy in magnetic fluids [J]. J Appl Phys, 1999, 85(8): 5962-5964.

[27] Di Ziyun, Chen Xianfen, Pu Shengli, et al.. Magnetic-field-induced birefringence and particle agglomeration [J]. Appl Phys Lett, 2006, 89(21): 211106.

王宁, 卜胜利, 王昊天. 厚度对磁流体薄膜场致双折射效应的影响[J]. 光学学报, 2013, 33(11): 1131002. Wang Ning, Pu Shengli, Wang Haotian. Influence of Sample Thickness on the Magnetic-Field-Induced Birefringence of the Nanostructured Magnetic Fluids[J]. Acta Optica Sinica, 2013, 33(11): 1131002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!