光学学报, 2018, 38 (12): 1201001, 网络出版: 2019-05-10   

基于航空多角度偏振信息的近海海域非球形气溶胶光学厚度反演研究 下载: 720次

Optical Depth Retrieval of Offshore Sea Nonspherical Aerosol Based on Airborne Multi-Angle Polarization Information
作者单位
1 中国科学院安徽光学精密机械研究所通用光学定标与表征技术重点实验室, 安徽 合肥 230031
2 中国科学院大学, 北京 100049
摘要
基于T矩阵散射理论,以中分辨率成像光谱仪(MODIS)海洋气溶胶模型细模态M4和粗模态M9为例,模拟计算了不同纵横轴比椭球形状以及等概率纵横轴比椭球形状分布的非球形粒子单次散射特性。与球形粒子进行比较,发现非球形性对细模态粒子具有起偏作用,而对粗模态粒子具有退偏作用。利用机载大气多角度偏振辐射计(AMPR)的近海海域航飞遥感数据,进行了非球形粒子和球形粒子气溶胶光学厚度的反演实验。反演结果表明,基于非球形模式得到的气溶胶光学厚度与地面太阳辐射计(Cimel,CE318)测量结果一致性较好,相对均方误差在0.1以内。
Abstract
With the fine-mode state M4 and coarse-mode state M9 in the moderate-resolution imaging spectroradiometer (MODIS) ocean aerosol model as examples, the single scattering characteristics of the nonspherical particles with ellipsoidal shape distributions under different aspect ratios and equal-probability aspect ratios are simulated based on the T-matrix scattering theory. Different from the spherical particles, the nonspherical shape causes polarization for fine-mode particles and depolarization for coarse-mode particles. The offshore sea remoting data from the airborne advanced atmospheric multi-angle polarized radiometer (AMPR) are used to retrieve the optical depths of both spherical and nonspherical aerosols. The retrieval results show that the optical depth obtained based on the nonspherical mode is well consistent with the measurement results by the sun-sky radiometer on earth (Cimel,CE318)and the relative root-mean-square error is smaller than 0.1.

1 引言

大气气溶胶直接或间接地影响辐射收支、云的形成以及降水,是引起气候变化的重要因素。对全球气溶胶特征及时空变化的不完全认知导致了人们对气溶胶辐射强迫作用的估计存在高度不确定性[1]。气溶胶光学厚度(AOT)及其物理光学特征的反演是观测载荷如中分辨率成像光谱仪(MODIS)、多角度成像分光辐射仪(MISR)、地球反射率极化和定向仪(POLDER)和定向极化相机(DPC)的重要观测任务之一。基于反射率及偏振反射率反演的气溶胶光学厚度产品的质量主要依赖于气溶胶单次散射特性计算的准确度。气溶胶的单次散射特性是由其粒子形状、大小和组分等决定。许多实验室和站点实验结果表明,自然非球形粒子的散射特性与等效球形粒子的差异比较大[2]。来自陆地干旱/半干旱地区的沙尘型气溶胶以及干的海盐气溶胶一般为非球形,如果被假设为球形粒子,反演的气溶胶光学厚度会有很大的误差。Mishchenko等[3]基于甚高分辨率辐射计(AVHRR)进行了沙尘和海盐气溶胶光学厚度的反演研究,表明气溶胶粒子形状因素不可忽略。Dubovik等[4]将椭球形状的非球形粒子应用于沙尘气溶胶粒子的遥感研究中。近海海域气溶胶比较复杂,受陆地气溶胶和海洋气溶胶的双重影响,针对近海海域非球形气溶胶光学厚度的偏振反演研究较少。Hasekamp 等[5]基于球形模式气溶胶,利用POLDER数据进行了海洋气溶胶特性的反演,Herman等[6]基于细模态粒子为球形模式而粗模态粒子为非球形模式的假设,利用POLDER数据反演了海洋气溶胶特性,发现非球形粒子模型的气溶胶辐亮度和偏振辐亮度与实测数据比较吻合。

目前,非球形粒子单次散射特性算法主要有T矩阵法[7]、有限差分时域法(FDTD)、离散偶极子近似法(ADDA)[8]、改进几何光学法(IGOM)[9]等。通常用椭球形粒子来近似非球形粒子,T矩阵算法能够迅速有效地计算一定尺度范围的随机朝向且旋转对称的非球形气溶胶粒子的单次散射特性,用于计算非球形气溶胶的辐射传输特性[4]

基于T矩阵理论,仿真计算了非球形粒子的单次散射特性,并与Mie球形粒子理论仿真计算结果比较,分析了二者的差异。构建了非球形粒子的气溶胶光学性质查找表,选取大气多角度偏振辐射计(AMPR)在渤海湾近海海域的航飞实验数据,进行了非球形气溶胶光学厚度的反演实验,为高精度的近海海域气溶胶光学厚度的反演提供了理论支持。

2 基本理论

2.1 粒子单次散射特性计算

为描述粒子散射过程,通常使用散射相矩阵F来表征入射光和散射光之间的关系,如果粒子是随机朝向、旋转对称且独立散射的,其单次散射相矩阵具有6个独立元素,可以表示为

F(Θ)=F11ΘF12Θ00F12ΘF22Θ0000F33ΘF34Θ00-F34ΘF44Θ,(1)

式中:Θ为散射角;Fi,j为散射相矩阵元;F11(Θ)为散射相函数,表示入射光经粒子散射后随角度分布的函数;F12(Θ)为偏振相函数,表示经粒子散射后的偏振光随角度分布的函数。球形粒子的散射相矩阵具有4个独立元素,F11=F22, F33=F44,可以用Mie散射理论进行计算。非球形粒子的散射相矩阵可以用T矩阵散射理论进行计算。

散射相矩阵元可以用广义球面函数展开,即

F11=l=0lmaxα1lP00l(cosΘ),(2)F22+F33=l=2lmax(α2l+α3l)P22l(cosΘ),(3)F22-F33=l=2lmax(α2l-α3l)P2,-2l(cosΘ),(4)F44=l=0lmaxα4lP00l(cosΘ),(5)F12=l=2lmaxβ1lP02l(cosΘ),(6)F34=l=2lmaxβ2lP02l(cosΘ),(7)

式中: Pmnl(cos Θ)是广义球面函数,mnl均为整数,是广义球面函数中的参量,αβ为广义球面函数展开系数。

具有一定形状谱、粒径谱分布的气溶胶粒子的散射截面、消光截面和散射相矩阵元展开系数可表示为[8]

Csca=j=1JpjrminrmaxnrCsca_j(r)dr,(8)Cext=j=1JpjrminrmaxnrCext_j(r)dr,(9)αil=1Cscaj=1JPjrminrmaxnrCsca_j(r)(αil)jdr,i=1,,4,(10)βil=1Cscaj=1JPjrminrmaxnrCsca_j(r)(βil)jdr,i=1,2,(11)ω=Csca/Cext,(12)

式中:Csca为散射截面;Cext为消光截面;pj为第j个形状的概率;ω为单次散射反照率;n(r)为粒子的粒径谱分布函数。根据(2)~(7)式可以得到一定形状谱分布下的非球形粒子单次散射相矩阵,进而可以计算一定形状谱分布下的非球形粒子的大气气溶胶偏振辐射特性。

2.2 辐射传输方程

大气平面平行分层模式在不考虑大气和地表的发射辐射情况下,矢量辐射传输方程可以表示为

μdI(τ,μ,φ)=I(τ,μ,φ)-ω4πZ(μ,φ,μs,φs)E0exp-τμs-ω4π02π-11Z(μ,φ,μ',φ')I(τ;μ',φ')'',(13)

式中:I为Stokes矢量;τ为整层大气的光学厚度;μφ为观测天顶角余弦和观测方位角;μsφs为太阳天顶角余弦和方位角;μ'φ'为漫射光入射的天顶角余弦和方位角;E0=E0×[1,0,0,0]T,其中E0为大气层顶的太阳辐射通量;Z为散射相矩阵F阵经过参考平面转换后的变换矩阵。(13)式等号右边第二项为单次散射贡献,第三项为多次散射贡献。求解矢量辐射传输方程时,将散射相矩阵展开为勒让德多项式形式,即

Fi,j(cosΘ)=n=0N-1Cn·pn(cosΘ),(14)

式中:pn为勒让德多项式的第n项;Cn为相应的展开系数。

用偏振反射率Rp表征传感器接收到的偏振辐射信息,即

Rp=πQ2+U2μsE0,(15)

式中:QU为Stokes参量。

传感器在观测高度z处接收到的偏振辐射信息用偏振反射率可以表示为

Rmeas(z,θs,θv,ϕ)=Ratm(z,θs,θv,ϕ)+Tλ(θs)·Rsurf(z,θs,θv,ϕ)·Tλ(z,θv),(16)

式中:λ为波长;θs为太阳天顶角;θv为传感器观测天顶角;ϕ为相对方位角; Ratm为大气的偏振反射率; Rsurf为下垫面偏振反射率; TλTλ分别为上行和下行传输透过率,可以表示为

Tλ=exp-τm(0)+τa0μs,(17)Tλ=exp-τm(z)+τazμ,(18)

式中:m和a代表气溶胶和大气分子。观测高度z处的气溶胶(x=a)或大气分子(x=m)的光学厚度可以由整层大气气溶胶或大气分子的光学厚度τ0,λ_x计算,即

τλ_x(z)=τ0,λ_x·[1-exp(-z/Hx)],(19)

式中:大气分子标高Hm和气溶胶标高Ha分别设置为8 km和2 km[10]

3 非球形粒子单次散射相矩阵计算及分析

基于2.1节的粒子单次散射特性计算理论,以MODIS海洋气溶胶模型[11]的细模态M4和粗模态M9为例,模拟计算球形粒子和非球形粒子的散射特性。一般使用865 nm波长的偏振信息进行海洋气溶胶参数的反演,因此本文中单次散射相矩阵的计算分析选用865 nm波长。

细模态M4气溶胶参数:复折射率mf=1.40-0.002i,平均半径rg,f= 0.10 μm,均方差σf=0.60,有效半径0.25 μm;粗模态M9气溶胶参数:复折射率mc=1.53-0.000i,平均半径rg,c=0.50 μm,均方差σc=0.80,有效半径2.5 μm。粒径谱分布为双峰对数正态谱分布,如

dn(r)dlnr=cfrσf2πexp-(lnr-lnrf)22σf2+ccrσc2πexp-(lnr-lnrc)22σc2,(20)

式中:下标f和c分别表示细模态和粗模态;c为粒子数浓度。

3.1 不同纵横轴比椭球形的非球形粒子散射相矩阵

为研究不同形状椭球粒子的单次散射相函数和偏振相函数,基于T矩阵算法计算了纵横轴比为1.2~2.4范围的细模态M4和粗模态M9椭球形粒子的散射相函数F11和线偏振度-F12/F11,并与球形粒子比较,如图1图2所示。由计算结果可以看出,粗、细模态粒子的相函数F11随着粒子非球形纵横轴比的增加越来越大,后向散射方向相函数越来越趋于平缓,而前向散射峰与形状基本无关,可以忽略形状的影响。长圆和扁圆形状粒子的F11和-F12/F11差异较小。粗细模态的偏振相函数对形状都比较敏感。图1中细模态的相函数F11随纵横轴比的变化较小,扁圆形状在散射角140°附近相函数具有交叉,长圆形状粒子相函数在135°~160°范围交叉,粗模态的相函数F11对形状更为敏感。总体来说,细模态线偏振度-F12/F11随着非球形性的增大而增大,在散射角155°附近球形粒子具有一定特征,凹型趋势,而非球形趋势更加平缓。

图 1. 细模态气溶胶粒子M4不同纵横轴比的椭球形非球形粒子相函数和线偏振度。(a)长圆椭球粒子, F11;(b)长圆椭球粒子, -F12/F11;(c)扁圆椭球粒子, F11;(d)扁圆椭球粒子, -F12/F11

Fig. 1. Phase functions and linear polarization degrees of ellipsoidal nonspherical particles with different aspect ratios in fine-mode state M4. (a) Prolate spheroid, F11; (b) prolate spheroid, -F12/F11; (c) oblate spheroid, F11; (d) oblate spheroid, -F12/F11

下载图片 查看所有图片

图 2. 粗模态气溶胶粒子M9不同纵横轴比的椭球形非球形粒子相函数和线偏振度。(a)长圆椭球粒子, F11;(b)长圆椭球粒子, -F12/ F11;(c)扁圆椭球粒子, F11;(d)扁圆椭球粒子, -F12/ F11

Fig. 2. Phase functions and linear polarization degrees of ellipsoidal nonspherical particles with different aspect ratios in coarse-mode state M9. (a) Prolate spheroid, F11; (b) prolate spheroid, -F12/F11; (c) oblate spheroid, F11; (d) oblate spheroid, -F12/F11

下载图片 查看所有图片

图2中粗模态粒子的相函数F11在侧向散射角120°附近,非球形粒子要大于球形粒子,F11在散射角大于140°的后向散射中,非球形粒子小于球形粒子,随着非球形粒子形状越来越趋于球形时,两者F11也趋于相近。从粗模态的线偏振度-F12/F11结果可以看出,球形粒子的偏振特性明显大于非球形粒子。粗粒子的相函数随纵横轴比的变化较大,对形状更为敏感。

3.2 等概率纵横轴比椭球形状谱分布的非球形粒子散射相矩阵

自然界中的大气非球形粒子的形状具有多样性,可以采用一定形状谱分布的非球形粒子近似表征[10]。以MODIS海洋气溶胶模型的细模态M4和粗模态M9为例,根据(2)~(12)式计算了等概率形状谱分布的粒子散射相矩阵,纵横轴比取值范围为1.6~2.2,步长0.1。同时,利用Mie散射程序计算的球形模式下的散射相矩阵作比较,如图3图4所示,除相函数F11外,其他相矩阵元素对相函数进行了归一化处理。

通过图3图4的计算结果可知,非球形和球形假设计算得到的散射相矩阵具有差异,尤其是粗模态粒子的差异比较明显。非球形的相函数在后向散射方向比较平缓,而球形粒子的相函数在后向散射角140°~180°范围特征性比较明显,细模态M4的非球形和球形相函数F11在散射角133°时有交叉,粗模态M9的非球形和球形相函数F11在散射角68°和138°都有交叉。从偏振相函数的计算结果可知,对于细模态M4而言,非球形具有起偏性,对粗模态M9而言,非球形具有退偏性。

图 3. 细模态M4等概率椭球形状分布的非球形粒子与球形粒子的散射相矩阵比较。(a) F11;(b) -F12/F11; (c) F22/F11; (d) F33/F11; (e) F34/F11; (f) F44/F11

Fig. 3. Scattering matrix comparison of spherical particles and nonspherical particles with equal-probability ellipsoidal distribution in fine-mode state M4. (a) F11; (b) -F12/F11; (c) F22/F11; (d) F33/F11; (e) F34/F11; (f) F44/F11

下载图片 查看所有图片

图 4. 粗模态M9等概率椭球形状分布的非球形粒子与球形粒子散射相矩阵比较。(a) F11; (b) -F12/F11; (c) F22/F11; (d) F33/F11; (e) F34/F11; (f) F44/F11

Fig. 4. Scattering matrix comparison of spherical particles and nonspherical particles with equal-probability ellipsoidal distribution in coarse-mode state M9. (a) F11; (b) -F12/F11; (c) F22/F11; (d) F33/F11; (e) F34/F11; (f) F44/F11

下载图片 查看所有图片

综上所述,粒子形状对气溶胶的单次散射特性尤其是偏振特性影响较大,非球形粒子的相函数相对球形粒子在后向散射方向更为平缓,细模态的非球形粒子偏振特性要强于球形粒子,相反,粗模态非球形粒子的偏振特性要弱于球形粒子。其他单次散射相矩阵元对于不同的形状也有差异。因此在进行气溶胶单次散射相矩阵计算的时候,需要考虑其形状因素。

4 近海海域非球形气溶胶光学厚度反演实验与结果分析

根据第3节的模拟分析结果,采用MODIS海洋气溶胶模型计算了球形模式和非球形模式的单次散射偏振特性,两者差异比较明显,因此在利用偏振信息进行海洋气溶胶反演时,需要考虑气溶胶形状的影响。中国太平洋海岸大部分区域受沙尘气溶胶影响[3],而沙尘气溶胶具有非球形特征,另外来自海洋的干性海盐气溶胶也是近海海域非球形粒子的来源之一。为比较球形粒子和非球形粒子的气溶胶光学厚度偏振反演结果,选取了中国科学院安徽光学精密机械研究所研制的机载AMPR[12]在渤海湾近海海域的航飞遥感数据进行反演分析。

4.1 AMPR仪器简介及数据选取

AMPR通过一对沃拉斯顿棱镜在0°,45°,90°和135°四个检偏方向的辐射测量来实现偏振检测,瞬时视场为1°,偏振定标精度为5%,沿轨扫描最大角度范围为-55°~55°。设有6个探测波长:490,555,665,865,960,1640 nm,其中960 nm波长用来探测水汽,其余波长用来探测云和气溶胶。

2012年8月10日AMPR在天津地区分别进行了上午和下午两个架次的飞行实验,两架次飞行航线基本相同,飞行路径以天津滨海机场为起点,途经天津、渤海湾和唐山。地基同步观测站点(N39.1773°,E118.3404°)配置了全自动太阳光度计(Cimel,CE318),对气溶胶特性进行同步测量,作为AMPR气溶胶光学厚度反演结果的验证数据。

由于陆地下垫面比较复杂,为减小下垫面对反演的影响,选择AMPR在渤海湾近海海域上空的飞行实验数据,使用865 nm波长的偏振辐射信息进行反演实验。AMPR飞行过程主要参数如表 1所示,AMPR上午沿飞行航迹方向扫描,下午则穿飞行航迹方向扫描。

表 1. 主要飞行参数

Table 1. Main parameters for flight

TimeAltitude /kmSolarzenithScan angleWeather
2012-08-10T10:02-10:173.134.2°<θs<37.2°-38°<θscan<29°Clear, cloudless
2012-08-10T13:53-14:073.232.4°<θs<34.4°-38°<θscan<29°Clear, cloudless

查看所有表

4.2 反演过程

基于偏振辐射传输模型RT3分别与Mie球形粒子散射计算程序和T矩阵非球形粒子散射计算程序相结合,模拟计算MODIS海洋气溶胶模型的光学特性参数,构建了AMPR航飞高度为3.2 km的海洋气溶胶球形模式和非球形模式的光学厚度查找表。

计算了AMPR在3.2 km观测高度,球形粒子和非球形粒子的偏振反射率随气溶胶光学厚度的变化趋势。计算条件:太阳天顶角为27°,观测天顶角为20.5°,相对方位角为45°,气溶胶模式为MODIS细模态M4和MODIS粗模态M9,结果如图5所示。从图中计算结果可以看出,细模态非球形粒子的偏振反射率大于球形粒子的偏振反射率。粗模态非球形粒子的偏振反射率远小于球形粒子的偏振反射率,证明了非球形对大粒子的退偏效应比较显著。

选取AMPR在2012年8月10日10:01—10:17以及13:54—14:07的渤海湾上空飞行实验数据,采用最小二乘法,反演得到气溶胶光学厚度,反演流程如图6所示。选取耀斑角大于40°的观测角度以避开太阳耀斑,从实测的大气偏振反射率中将大气分子Rayleigh偏振反射率和海洋下垫面偏振反射率扣除,得到气溶胶偏振反射率,利用查找表的方法计算偏振反射率的模拟值和实测值,寻找最小残差,得到海洋气溶胶光学厚度。海洋下垫面偏振反射率可以由Cox-Munk模型[13]计算。

4.3 反演结果与分析

采用图6所示的反演流程,基于球形粒子和非球形粒子的MODIS海洋型气溶胶光学性质查找表,反演AMPR航飞路径上渤海湾近海海域的气溶胶光学厚度,反演结果如图7所示。可以看出,非球形粒子气溶胶光学厚度更符合地面全自动太阳光度计(CE318)的测量结果,而球形粒子气溶胶光学厚度相对比较离散。

图 5. 不同态下球形粒子、非球形粒子偏振反射率随气溶胶光学厚度的变化趋势。(a)细模态M4;(b)粗模态M9

Fig. 5. Polarized reflectance versus optical depth for spherical and nonspherical particles in different states. (a) Fine-mode state M4; (b) coarse-mode state M9

下载图片 查看所有图片

图 6. 海洋气溶胶反演流程图

Fig. 6. Flow chart of ocean aerosol retrieval

下载图片 查看所有图片

图 7. 球形和非球形气溶胶粒子气溶胶光学厚度反演结果。(a)上午;(b)下午

Fig. 7. Retrieval results of optical depths of spherical and nonspherical aerosol particles. (a) Morning; (b) afternoon

下载图片 查看所有图片

由反演得到的气溶胶光学厚度,根据2.2节的(16)式模拟计算了865 nm波长AMPR飞行高度的球形气溶胶偏振反射率和非球形气溶胶偏振反射率,并与实测的偏振反射率值比较,如图8所示。可以看出,非球形气溶胶模式下模拟计算的气溶胶偏振反射率模拟值与实测量值的变化趋势更为一致。

为定量评估两种形状模式下反演结果与真实值的离散程度,将CE318测量的气溶胶光学厚度定义为真值,则气溶胶光学厚度反演值与真值之间的相对误差为

ετ=τretr-τmeasτmeas(21)

相对均方误差为

MSE_τ=ετ,i2n(22)

相对均方误差越大,表示实验值与真值之间的离散程度越大,越偏离真值。根据(22)式计算的球形粒子和非球形粒子的气溶胶光学厚度反演值相对均方误差,以及反演时间段的气溶胶光学厚度平均值如表2所示。

表2结果可以看出,非球形气溶胶光学厚度平均值与CE318测量值更为接近。同时,非球形气溶胶光学厚度的相对均方误差在上午为0.0887,下午为0.0557。而球形气溶胶光学厚度的相对均方误差在上午为0.1648,下午为0.1813,是非球形模式的2~3倍,离散性比较大。因此,反演的非球形气溶胶光学厚度结果更能反映实验测量时近海海域气溶胶的情况。CE318当天测量数据反演的气溶胶形状以非球形为主,其中,上午9:14非球形粒子比例为50.6%,下午14:17非球形粒子比例为99%。

图 8. AMPR在865 nm的实测和模拟偏振反射率。(a)上午;(b)下午

Fig. 8. Measured and simulated polarized reflectance for AMPR at 865 nm. (a) Morning; (b) afternoon

下载图片 查看所有图片

表 2. 球形模式和非球形模式反演的气溶胶光学厚度均值与相对均方误差

Table 2. Average value and relative root-mean-square error of spherical and nonspherical aerosols

TimeModeAveraged AODMSE_τStatic number
Nonspheroid particle0.16190.0887
MorningSpherical particle0.14320.1648106
CE3180.16356
Nonspheroid particle0.05600.0557
AfternoonSpherical particle0.05170.181394
CE3180.05634

查看所有表

5 结论

基于T矩阵和Mie散射理论,以MODIS海洋气溶胶模型M4和M9为例,模拟计算了椭球形状非球形气溶胶和球形气溶胶的粒子单次散射相矩阵。细模态气溶胶非球形模式和球形模式的相函数差异较小,粗模态差异较大;细模态和粗模态的偏振相函数对形状都比较敏感,非球形对细模态具有起偏性,对粗模态具有退偏性。形状对单次散射特性的影响不可忽略。

基于AMPR的渤海湾近海海域航飞遥感数据反演的非球形气溶胶光学厚度,与地面CE318数据同步测量的数据值更为接近,非球形模式下的大气偏振反射率模拟值与AMPR测量值一致性较好。在利用偏振遥感信息进行近海海域气溶胶光学厚度反演时,需要考虑粒子形状影响因素来构建相应的气溶胶光学厚度查找表,进而可反演得到更高精度的气溶胶光学厚度产品。

参考文献

[1] Hansen J, Rossow W, Carlson B. et al. Low-cost long-term monitoring of global climate forcings and feedbacks[J]. Climatic Change, 1995, 31(2/3/4): 247-271.

    Hansen J, Rossow W, Carlson B. et al. Low-cost long-term monitoring of global climate forcings and feedbacks[J]. Climatic Change, 1995, 31(2/3/4): 247-271.

    Hansen J, Rossow W, Carlson B. et al. Low-cost long-term monitoring of global climate forcings and feedbacks[J]. Climatic Change, 1995, 31(2/3/4): 247-271.

    Hansen J, Rossow W, Carlson B. et al. Low-cost long-term monitoring of global climate forcings and feedbacks[J]. Climatic Change, 1995, 31(2/3/4): 247-271.

    Hansen J, Rossow W, Carlson B. et al. Low-cost long-term monitoring of global climate forcings and feedbacks[J]. Climatic Change, 1995, 31(2/3/4): 247-271.

[2] KuikF. Single scattering of light by ensembles of particles with various shapes[D]. Netherlands: Vrije Universiteit Amsterdam, 1992.

    KuikF. Single scattering of light by ensembles of particles with various shapes[D]. Netherlands: Vrije Universiteit Amsterdam, 1992.

    KuikF. Single scattering of light by ensembles of particles with various shapes[D]. Netherlands: Vrije Universiteit Amsterdam, 1992.

    KuikF. Single scattering of light by ensembles of particles with various shapes[D]. Netherlands: Vrije Universiteit Amsterdam, 1992.

    KuikF. Single scattering of light by ensembles of particles with various shapes[D]. Netherlands: Vrije Universiteit Amsterdam, 1992.

[3] Mishchenko M I, Geogdzhayev I V, Liu L. et al. Aerosol retrievals from AVHRR radiances: effects of particle nonsphericity and absorption and an updated long-term global climatology of aerosol properties[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003, 79: 953-972.

    Mishchenko M I, Geogdzhayev I V, Liu L. et al. Aerosol retrievals from AVHRR radiances: effects of particle nonsphericity and absorption and an updated long-term global climatology of aerosol properties[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003, 79: 953-972.

    Mishchenko M I, Geogdzhayev I V, Liu L. et al. Aerosol retrievals from AVHRR radiances: effects of particle nonsphericity and absorption and an updated long-term global climatology of aerosol properties[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003, 79: 953-972.

    Mishchenko M I, Geogdzhayev I V, Liu L. et al. Aerosol retrievals from AVHRR radiances: effects of particle nonsphericity and absorption and an updated long-term global climatology of aerosol properties[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003, 79: 953-972.

    Mishchenko M I, Geogdzhayev I V, Liu L. et al. Aerosol retrievals from AVHRR radiances: effects of particle nonsphericity and absorption and an updated long-term global climatology of aerosol properties[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003, 79: 953-972.

[4] Dubovik O, Holben B N, Lapyonok T. et al. Non-spherical aerosol retrieval method employing light scattering by spheroids[J]. Geophysical Research Letters, 2002, 29(10): 54.

    Dubovik O, Holben B N, Lapyonok T. et al. Non-spherical aerosol retrieval method employing light scattering by spheroids[J]. Geophysical Research Letters, 2002, 29(10): 54.

    Dubovik O, Holben B N, Lapyonok T. et al. Non-spherical aerosol retrieval method employing light scattering by spheroids[J]. Geophysical Research Letters, 2002, 29(10): 54.

    Dubovik O, Holben B N, Lapyonok T. et al. Non-spherical aerosol retrieval method employing light scattering by spheroids[J]. Geophysical Research Letters, 2002, 29(10): 54.

    Dubovik O, Holben B N, Lapyonok T. et al. Non-spherical aerosol retrieval method employing light scattering by spheroids[J]. Geophysical Research Letters, 2002, 29(10): 54.

[5] Hasekamp O P, Litvinov P, Butz A. Aerosol properties over the ocean from PARASOL multiangle photopolarimetric measurements[J]. Journal of Geophysical Research, 2011, 116: D14204.

    Hasekamp O P, Litvinov P, Butz A. Aerosol properties over the ocean from PARASOL multiangle photopolarimetric measurements[J]. Journal of Geophysical Research, 2011, 116: D14204.

    Hasekamp O P, Litvinov P, Butz A. Aerosol properties over the ocean from PARASOL multiangle photopolarimetric measurements[J]. Journal of Geophysical Research, 2011, 116: D14204.

    Hasekamp O P, Litvinov P, Butz A. Aerosol properties over the ocean from PARASOL multiangle photopolarimetric measurements[J]. Journal of Geophysical Research, 2011, 116: D14204.

    Hasekamp O P, Litvinov P, Butz A. Aerosol properties over the ocean from PARASOL multiangle photopolarimetric measurements[J]. Journal of Geophysical Research, 2011, 116: D14204.

[6] HermanM, Deuzé JL, MarchandA, et al. Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model[J]. Journal of Geophysical Research: Atmospheres, 2005, 110: D10S02.

    HermanM, Deuzé JL, MarchandA, et al. Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model[J]. Journal of Geophysical Research: Atmospheres, 2005, 110: D10S02.

    HermanM, Deuzé JL, MarchandA, et al. Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model[J]. Journal of Geophysical Research: Atmospheres, 2005, 110: D10S02.

    HermanM, Deuzé JL, MarchandA, et al. Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model[J]. Journal of Geophysical Research: Atmospheres, 2005, 110: D10S02.

    HermanM, Deuzé JL, MarchandA, et al. Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model[J]. Journal of Geophysical Research: Atmospheres, 2005, 110: D10S02.

[7] Mishchenko M I. Light scattering by randomly oriented axially symmetric particles[J]. Journal of the Optical Society of America A, 1991, 8(6): 871-882.

    Mishchenko M I. Light scattering by randomly oriented axially symmetric particles[J]. Journal of the Optical Society of America A, 1991, 8(6): 871-882.

    Mishchenko M I. Light scattering by randomly oriented axially symmetric particles[J]. Journal of the Optical Society of America A, 1991, 8(6): 871-882.

    Mishchenko M I. Light scattering by randomly oriented axially symmetric particles[J]. Journal of the Optical Society of America A, 1991, 8(6): 871-882.

    Mishchenko M I. Light scattering by randomly oriented axially symmetric particles[J]. Journal of the Optical Society of America A, 1991, 8(6): 871-882.

[8] Yee K N. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302-307.

    Yee K N. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302-307.

    Yee K N. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302-307.

    Yee K N. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302-307.

    Yee K N. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302-307.

[9] Yurkin M A, Maltsev V P, Hoekstra A G. The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 106(1/2/3): 546-557.

    Yurkin M A, Maltsev V P, Hoekstra A G. The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 106(1/2/3): 546-557.

    Yurkin M A, Maltsev V P, Hoekstra A G. The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 106(1/2/3): 546-557.

    Yurkin M A, Maltsev V P, Hoekstra A G. The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 106(1/2/3): 546-557.

    Yurkin M A, Maltsev V P, Hoekstra A G. The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 106(1/2/3): 546-557.

[10] Mishchenko M I. Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength[J]. Applied Optics, 1993, 32(24): 4652-4666.

    Mishchenko M I. Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength[J]. Applied Optics, 1993, 32(24): 4652-4666.

    Mishchenko M I. Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength[J]. Applied Optics, 1993, 32(24): 4652-4666.

    Mishchenko M I. Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength[J]. Applied Optics, 1993, 32(24): 4652-4666.

    Mishchenko M I. Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength[J]. Applied Optics, 1993, 32(24): 4652-4666.

[11] Breon F M, Tanre D, Lecomte P. et al. Polarized reflectance of bare soils and vegetation: measurements and models[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2): 487-499.

    Breon F M, Tanre D, Lecomte P. et al. Polarized reflectance of bare soils and vegetation: measurements and models[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2): 487-499.

    Breon F M, Tanre D, Lecomte P. et al. Polarized reflectance of bare soils and vegetation: measurements and models[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2): 487-499.

    Breon F M, Tanre D, Lecomte P. et al. Polarized reflectance of bare soils and vegetation: measurements and models[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2): 487-499.

    Breon F M, Tanre D, Lecomte P. et al. Polarized reflectance of bare soils and vegetation: measurements and models[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2): 487-499.

[12] Waquet F, Goloub P, Deuzé J L. et al. Aerosol retrieval over land using a multiband polarimeter and comparison with path radiance method[J]. Journal of Geophysical Research: Atmospheres, 2007, 112: D11214.

    Waquet F, Goloub P, Deuzé J L. et al. Aerosol retrieval over land using a multiband polarimeter and comparison with path radiance method[J]. Journal of Geophysical Research: Atmospheres, 2007, 112: D11214.

    Waquet F, Goloub P, Deuzé J L. et al. Aerosol retrieval over land using a multiband polarimeter and comparison with path radiance method[J]. Journal of Geophysical Research: Atmospheres, 2007, 112: D11214.

    Waquet F, Goloub P, Deuzé J L. et al. Aerosol retrieval over land using a multiband polarimeter and comparison with path radiance method[J]. Journal of Geophysical Research: Atmospheres, 2007, 112: D11214.

    Waquet F, Goloub P, Deuzé J L. et al. Aerosol retrieval over land using a multiband polarimeter and comparison with path radiance method[J]. Journal of Geophysical Research: Atmospheres, 2007, 112: D11214.

[13] Remer L A, Kaufman Y J, Tanré D. et al. The MODIS aerosol algorithm, products, and validation[J]. Journal of the Atmospheric Sciences, 2005, 62(4): 947-973.

    Remer L A, Kaufman Y J, Tanré D. et al. The MODIS aerosol algorithm, products, and validation[J]. Journal of the Atmospheric Sciences, 2005, 62(4): 947-973.

    Remer L A, Kaufman Y J, Tanré D. et al. The MODIS aerosol algorithm, products, and validation[J]. Journal of the Atmospheric Sciences, 2005, 62(4): 947-973.

    Remer L A, Kaufman Y J, Tanré D. et al. The MODIS aerosol algorithm, products, and validation[J]. Journal of the Atmospheric Sciences, 2005, 62(4): 947-973.

    Remer L A, Kaufman Y J, Tanré D. et al. The MODIS aerosol algorithm, products, and validation[J]. Journal of the Atmospheric Sciences, 2005, 62(4): 947-973.

[14] 王涵, 孙晓兵, 孙斌, 等. 基于航空多角度偏振辐射计遥感数据评估陆地表面偏振反射模型[J]. 光学学报, 2014, 34(1): 0123002.

    王涵, 孙晓兵, 孙斌, 等. 基于航空多角度偏振辐射计遥感数据评估陆地表面偏振反射模型[J]. 光学学报, 2014, 34(1): 0123002.

    王涵, 孙晓兵, 孙斌, 等. 基于航空多角度偏振辐射计遥感数据评估陆地表面偏振反射模型[J]. 光学学报, 2014, 34(1): 0123002.

    王涵, 孙晓兵, 孙斌, 等. 基于航空多角度偏振辐射计遥感数据评估陆地表面偏振反射模型[J]. 光学学报, 2014, 34(1): 0123002.

    王涵, 孙晓兵, 孙斌, 等. 基于航空多角度偏振辐射计遥感数据评估陆地表面偏振反射模型[J]. 光学学报, 2014, 34(1): 0123002.

    Wang H, Sun X B, Sun B, et al. Evaluation of land surface polarization models based on airborne advanced atmosphere multi-angle polarization radiometer measurements[J]. Acta Optica Sinica, 2014, 34(1): 0123002.

    Wang H, Sun X B, Sun B, et al. Evaluation of land surface polarization models based on airborne advanced atmosphere multi-angle polarization radiometer measurements[J]. Acta Optica Sinica, 2014, 34(1): 0123002.

    Wang H, Sun X B, Sun B, et al. Evaluation of land surface polarization models based on airborne advanced atmosphere multi-angle polarization radiometer measurements[J]. Acta Optica Sinica, 2014, 34(1): 0123002.

    Wang H, Sun X B, Sun B, et al. Evaluation of land surface polarization models based on airborne advanced atmosphere multi-angle polarization radiometer measurements[J]. Acta Optica Sinica, 2014, 34(1): 0123002.

    Wang H, Sun X B, Sun B, et al. Evaluation of land surface polarization models based on airborne advanced atmosphere multi-angle polarization radiometer measurements[J]. Acta Optica Sinica, 2014, 34(1): 0123002.

[15] Cox C, Munk W. Measurement of the roughness of the sea surface from photographs of the sun's glitter[J]. Journal of the Optical Society of America, 1954, 44(11): 838-850.

    Cox C, Munk W. Measurement of the roughness of the sea surface from photographs of the sun's glitter[J]. Journal of the Optical Society of America, 1954, 44(11): 838-850.

    Cox C, Munk W. Measurement of the roughness of the sea surface from photographs of the sun's glitter[J]. Journal of the Optical Society of America, 1954, 44(11): 838-850.

    Cox C, Munk W. Measurement of the roughness of the sea surface from photographs of the sun's glitter[J]. Journal of the Optical Society of America, 1954, 44(11): 838-850.

    Cox C, Munk W. Measurement of the roughness of the sea surface from photographs of the sun's glitter[J]. Journal of the Optical Society of America, 1954, 44(11): 838-850.

提汝芳, 孙晓兵, 李树, 陈震霆, 乔延利. 基于航空多角度偏振信息的近海海域非球形气溶胶光学厚度反演研究[J]. 光学学报, 2018, 38(12): 1201001. Rufang Ti, Xiaobing Sun, Shu Li, Zhenting Chen, Yanli Qiao. Optical Depth Retrieval of Offshore Sea Nonspherical Aerosol Based on Airborne Multi-Angle Polarization Information[J]. Acta Optica Sinica, 2018, 38(12): 1201001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!