强激光与粒子束, 2012, 24 (2): 267, 网络出版: 2012-05-08   

环形HYLTE喷管耦合段及光腔区流场的数值模拟

Numerical study of flow field in coupling region and optical cavity of annular HYLTE nozzle
作者单位
国防科学技术大学 光电科学与工程学院, 长沙 410073
摘要
参考传热学相关理论,估算燃烧室的传热损耗分数及相应的平衡温度,确定了主喷管的入口参数设置。在此基础上,对环形HYLTE喷管的耦合段及光腔区流场进行3维的数值模拟,给出了F原子质量分数、静温、静压的空间分布,得到了光腔区各支谱线的小信号增益系数变化曲线。将计算结果与实验结果进行比对,光谱测量结果及移动光轴实验证实了计算模型的合理性。
Abstract
Heat energy loss fraction and corresponding equilibrium temperature of combustor are roughly estimated according to the heat transfer theory on condition that input fuels’ mass flow rates, compositions proportioning and relevant configuration parameters of combustor are known. Entrance boundary parameters of primary nozzle are then determined. The flow field in coupling region and optical cavity of annular hypersonic low temperature (HYLTE) nozzle is numerically simulated using 3D computational fluid dynamics method. Spatial distributions of F atom mass fraction, static temperature and pressure are described. Small signal gain coefficient distributions for spectral lines in optical cavity are calculated by post processing of the flow field data. The experiments of measuring output spectrum and moving optical axis demonstrate the rationality of the computational model considering heat energy loss of combustor walls.
参考文献

[1] Duncan W A, Patterson S P, Graves B R, et al. Gain generator optimization for hydrogen fluoride overtone and fundamental chemical lasers[C]//Proc of SPIE. 1993, 1871:123-134.

[2] Jin Donghuan, Liu Wenguang, Chen Xing, et al. Comparative analysis of annular nozzle and linear nozzle in CW DF/HF chemical laser[J]. Laser and Infrared, 2010, 40(11):1186-1190. (in Chinese)

[3] Sha Guohe. Advances in high-power chemical lasers[J]. Chinese Journal of Lasers, 1994, 21(5):387-390. (in Chinese)

[4] Kwok M A. A model predictor for chemical laser combustors[C]//The 32nd AIAA Plasmadynamics and Lasers Conference. 2001.

[5] Hua Weihong. Numerical simulation of high energy continuous wave DF/HF chemical laser[D]. Changsha: National University of Defense Technology, 1997. (in Chinese)

[6] Liu Wenguang. Study on the cylindrical continuous wave HF chemical high energy lasers[D]. Changsha: National University of Defense Technology, 2004. (in Chinese)

[7] Yuan Shengfu. Theoretical design of latest gain generator for continuous wave DF/HF chemical lasers[D]. Changsha: National University of Defense Technology, 2002. (in Chinese)

[8] Li Lan, Yuan Shengfu, Hua Weihong, et al. Numerical investigation of jets’ influence on TRIP gain generator[J]. High Power Laser and Particle Beams, 2009, 21(6):826-830. (in Chinese)

[9] Shih T H, Liou W W, Shabbir A, et al. A new k-ε eddy-viscosity model for high Reynolds number turbulent flows model development and validation[J]. Computer Fluids, 1995, 24(3):227-238.

[10] Ying Chuntong. Transport theory and application of gas[M]. Beijing: Tsinghua University Press, 1990. (in Chinese)

[11] Yang Shiming, Tao Wenquan. Heat transfer[M]. Beijing: Higher Education Press, 2006. (in Chinese)

[12] Zhao Zhennan. Heat transfer[M]. Beijing: Higher Education Press, 2002. (in Chinese)

[13] Gordon S, McBride B J. Computer program for calculation of complex chemical equilibrium compositions and applications Ⅰ. Analysis[R]. NASA RP-1311, National Aeronautics and Space Administration, 1994.

[14] Liu Wenguang, Jin Donghuan, Chen Xing, et al. First lasing experiment of HF chemical laser based on cylindrical gain generator assembly[J]. Chinese Journal of Lasers, 2011, 38:0304002. (in Chinese)

靳冬欢, 刘文广, 陈星, 陆启生, 赵伊君. 环形HYLTE喷管耦合段及光腔区流场的数值模拟[J]. 强激光与粒子束, 2012, 24(2): 267. Jin Donghuan, Liu Wenguang, Chen Xing, Lu Qisheng, Zhao Yijun. Numerical study of flow field in coupling region and optical cavity of annular HYLTE nozzle[J]. High Power Laser and Particle Beams, 2012, 24(2): 267.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!