光学学报, 2020, 40 (7): 0722002, 网络出版: 2020-04-15   

面向小行星探测的可见-红外光谱成像光学系统 下载: 1439次

Visible-Infrared Imaging Spectrometer for the Exploration of Asteroids
杨福臻 1,2陈新华 1,2,*赵知诚 1,2刘全 1,2沈为民 1,2
作者单位
1 苏州大学光电科学与工程学院教育部现代光学技术重点实验室, 江苏 苏州 215006
2 苏州大学光电科学与工程学院江苏省先进光学制造技术重点实验室, 江苏 苏州 215006
引用该论文

杨福臻, 陈新华, 赵知诚, 刘全, 沈为民. 面向小行星探测的可见-红外光谱成像光学系统[J]. 光学学报, 2020, 40(7): 0722002.

Fuzhen Yang, Xinhua Chen, Zhicheng Zhao, Quan Liu, Weimin Shen. Visible-Infrared Imaging Spectrometer for the Exploration of Asteroids[J]. Acta Optica Sinica, 2020, 40(7): 0722002.

参考文献

[1] 徐伟彪, 赵海斌. 小行星深空探测的科学意义和展望[J]. 地球科学进展, 2005, 20(11): 1183-1190.

    Xu W B, Zhao H B. Deep space exploration of asteroids: the science perspectives[J]. Advances in Earth Science, 2005, 20(11): 1183-1190.

[2] Warren JW, PeacockK, Darlington EH, et al. Near infrared spectrometer for the near earth asteroid rendezvous mission[M] ∥The Near Earth Asteroid Rendezvous Mission. Dordrecht: Springer Netherlands, 1997: 101- 167.

[3] de Sanctis M C, Team V, Coradini A, et al. The VIR spectrometer[J]. Space Science Reviews, 2011, 163(1/2/3/4): 329-369.

[4] Reuter D C, Simon A A, Hair J, et al. The OSIRIS-REx visible and InfraRed spectrometer (OVIRS): spectral maps of the asteroid bennu[J]. Space Science Reviews, 2018, 214(2): 54-76.

[5] 焦维新, 钟俊. 近地小行星探测目标选择[J]. 地球物理学报, 2016, 59(11): 3955-3959.

    Jiao W X, Zhong J. Identifying potential targets for future near-Earth asteroid exploration[J]. Chinese Journal of Geophysics, 2016, 59(11): 3955-3959.

[6] 陈宏毅, 缪秉魁, 谢兰芳, 等. HED族陨石: 分异型小行星物质组成和演化[J]. 矿物岩石地球化学通报, 2016, 35(5): 1037-1052.

    Chen H Y, Miao B K, Xie L F, et al. A review to the composition and evolution of the HED meteorites: the differentiated asteroids[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(5): 1037-1052.

[7] Pieters C M, Binzel R P, Bogard D, et al. Asteroid-meteorite links: the Vesta conundrum (s)[J]. Proceedings of the International Astronomical Union, 2005, 1(S229): 273-288.

[8] 杨达昌, 张宗贵, 陈洁, 等. 地质矿产资源调查成像光谱分辨率的需求分析[ C]∥第二届全国青年地质大会. 2015年4月18-19日, 成都, 四川, 中国. 北京: 中国地质协会, 2015, 61( Z1): 412- 413.

    Yang DC, Zhang ZG, ChenJ, et al. Demand analysis of imaging spectral resolution of geological mineral resources survey[ C]∥2nd National Youth Geological Congress, April 18-19, 2015, Chengdu, Sichuan, China. Beijing: Geological Society of China, 2015, 61( Z1): 412- 413.

[9] 黄绪杰, 靳阳明, 潘俏, 等. 多角度偏振成像光谱仪的光学设计[J]. 红外与激光工程, 2017, 46(11): 1118002.

    Huang X J, Jin Y M, Pan Q, et al. Optical design of multi-angle imaging spectropolarimeter[J]. Infrared and Laser Engineering, 2017, 46(11): 1118002.

[10] 朱雨霁, 尹达一, 陈永和, 等. 高光谱分辨率紫外Offner成像光谱仪系统设计[J]. 光学学报, 2018, 38(2): 0222001.

    Zhu Y J, Yin D Y, Chen Y H, et al. Design of hyperspectral resolution ultraviolet offner imaging spectrometer system[J]. Acta Optica Sinica, 2018, 38(2): 0222001.

[11] . Meynart R, Neeck S P, et al. Sensors, Systems, and Next-Generation Satellites XIV: Sofradir detectors for hyperspectral applications from visible up to VLWIR[J]. Proceedings of SPIE, 2010, 7826: 78261I.

[12] Prieto-Blanco X, Montero-Orille C, Couce B, et al. Analytical design of an Offner imaging spectrometer[J]. Optics Express, 2006, 14(20): 9156-9168.

[13] Schlapfer D, Nieke J, Itten K I. Spatial PSFnonuniformity effects in airborne pushbroom imaging spectrometry data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(2): 458-468.

[14] Mouroulis P. Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration[J]. Optical Engineering, 2000, 39(3): 808-816.

杨福臻, 陈新华, 赵知诚, 刘全, 沈为民. 面向小行星探测的可见-红外光谱成像光学系统[J]. 光学学报, 2020, 40(7): 0722002. Fuzhen Yang, Xinhua Chen, Zhicheng Zhao, Quan Liu, Weimin Shen. Visible-Infrared Imaging Spectrometer for the Exploration of Asteroids[J]. Acta Optica Sinica, 2020, 40(7): 0722002.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!