红外与激光工程, 2019, 48 (5): 0520003, 网络出版: 2019-06-22  

基于二氧化硅薄膜夹层式亚波长金属光栅的宽波段太赫兹偏振分束器

Broadband terahertz polarization beam splitter based on subwavelength grating sandwiched between silica layers
作者单位
1 青岛大学 物理科学学院, 山东 青岛 266000
2 山东省光学工程学会, 山东 青岛 266000
摘要
设计出一种结构新颖的宽波段太赫兹偏振分束器, 这种偏振分束器由夹层式亚波长金属光栅制成。亚波长金属光栅偏振分束器可以将入射的任意自然光分成两束偏振状态垂直的线偏振光。其中, TE模反射而TM模透射。设计的偏振分束器在3.5~5.5 THz波段可以达到很高的衍射效率与消光比。但是, 在光栅的实际制作过程中, 加工技术的缺陷引起的误差大大影响了光栅的性能, 比如衍射效率, 消光比等。因此文中对一些结构参数进行了计算, 从计算结果可以看出这种偏振分束器也有很好的工艺容差。当覆盖层厚度D1与底层介质厚度D3的变化范围分别为1~1.2 滋m和 2.8~3 滋m时, T■■大于96.9%, R■■大于98.7%。Tc和Rc分别大于31 dB和33.4 dB。结果显示, 设计的偏振分束器在2 THz的带宽10°的大角度范围内, 衍射效率高于90%, 消光比大于20 dB。因此文中设计对于太赫兹调制器件的研究, 以及太赫兹通信系统的集成都有很大的参考价值。
Abstract
A broadband terahertz (THz) polarization beam splitter (PBS) was proposed. The PBS was based on subwavelength grating sandwiched between silica layers, which could split an arbitrarily polarized optical beam into two orthogonal, linearly polarized components, and then reflected the TE mode and transmit the TM mode. It was shown that THz PBS could efficiently operate from 3.5 THz to 5.5 THz, with high diffraction efficiencies and extinction ratios. In the process of PBS manufacture, there would be unavoidable deviations of the geometric parameters, which may affect its properties, i.e. the diffraction efficiencies and extinction ratios. Therefore, some structure parameters were calculated. Those values suggested that the designed PBS allows sufficient manufacture tolerances. When D1 ranged from 1 滋m to 1.2 滋m and thickness D3 ranged from 2.8 滋m to 3 滋m, the values of T■■ are always more than 96.9% and those of R■■ are more than 98.7%. And the values of Tc and Rc were respectively kept higher than 31 dB and 33.4 dB. These results show the PBS with a frequency bandwidth of 2 THz, a large angle range of 10°, an extinction ratios over 20 dB and a diffraction efficiencies over 90%, is obtained. This work may inspire related studies and achieve some potential applications in THz manipulation system.
参考文献

[1] Yardimci N T , Cakmakyapan S, Hemmati S, et al. A high-power broadband terahertz source enabled by three-dimensional light confinement in a plasmonic nanocavity[J]. Scientific Reports, 2017, 7(1): 4166.

[2] Seifert T, Jaiswal S, Sajadi M, et al. Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV·cm -1 from a metallic spintronic emitter[J]. Applied Physics Letters, 2017, 110(25): 355-362.

[3] Lin Xufin, Zhou Fen, Zhang Jianbin, et al. High power wideband terahertz sources based on femtosecond facility[J]. Infrared and Laser Engineering, 2012, 41(1): 116-118. (in Chinese)

[4] Zhang X, Tian Z, Yue W, et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities[J]. Advanced Materials, 2013, 25(33): 4567-4572.

[5] Fan R H, Zhou Y, Ren X P, et al. Freely tunable broadband polarization rotator for terahertz waves[J]. Advanced Materials, 2015, 27(7): 1201-1206.

[6] Neu J, Krolla B, Paul O, et al. Metamaterial-based gradient index lens with strong focusing in the THz frequency range[J]. Optics Express, 2010, 19(5): 27748-27757.

[7] Scherger B, J?觟rdens C, Koch M. Variable-focus terahertz lens[J]. Optics Express, 2011, 19(5): 4528-4535.

[8] Fattinger C, Grischkowsky D, Exter M V, et al. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors[J]. Journal of the Optical Society of America B, 1990, 7(10): 2006-2015.

[9] Luo Zhiwei, Gu Xinan, Zhu Weichen, et al. Optical properties of GaSe: S crystals in terahertz frequency range[J]. Optics and Precision Engineering, 2011, 19(2): 354-359. (in Chinese)

[10] Rutz F, Hasek T, Koch M, et al. Terahertz birefringence of liquid crystal polymers[J]. Applied Physics Letters, 2006, 89(22): 221911.

[11] Mo G Q, Li J S. Compact terahertz wave polarization beam splitter using photonic crystal[J]. Applied Optics, 2016, 55(25): 7093-7097.

[12] Hou Yu, Yang Huijing. Broadband terahertz polarization splitter based on orthogonal dual hollow core[J]. Infrared and Laser Engineering, 2016, 45(12): 1225005. (in Chinese)

[13] Wang W L, Rong X H. Design of terahertz wave polarizer based on thin film structure with micrometer[J]. Journal of Nanoengineering and Nanosystems, 2014, 230(2): 81-84.

[14] Berry C W, Jarrahi M. Broadband terahertz polarizing beam splitter on a polymer substrate[J]. Journal of Infrared and Millimeter Terahertz Waves, 2012, 33(2): 127-130.

[15] Du Mingdi, Jia Yaqiong, He Shuzhen. Impact of groove depth of subwavelength metal grating on THz spoof SPPs[J]. Infrared and Laser Engineering, 2017, 46(8): 0825003. (in Chinese)

[16] Okamoto K, Tsuruda K, Diebold S, et al. Terahertz sensor using photonic crystal cavity and resonant tunneling diodes[J]. Journal of Infrared and Millimeter Terahertz Waves, 2017, 38(9): 1085-1097.

[17] Pan Wu, Zeng Wei, Zhang Jun, et al. Design of multilayer stacked terahertz communication lens antenna[J]. Optics and Precision Engineering, 2017, 25(1): 65-72. (in Chinese)

[18] Arnold M, Hehl K. Embedded grating in a multilayer system[J]. J Mod Opt, 2007, 40(12): 2423-2432.

[19] Awasthi S K, Srivastava A, Malaviya U, et al. Wide-angle, broadband plate polarizer in terahertz frequency region[J]. Solid State Commun, 2008, 146(11): 506-509.

[20] Knop K. Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves[J]. J Opt Soc Am, 1978, 68(9): 1206-1210.

[21] Hartke B. Global geometry optimization of clusters using genetic algorithms[J]. Iran J Public Health, 1993, 97(39): 9973-9976.

[22] Zhou L b, Liu W. Broadband polarizing beam splitter with an embedded metal-wire nanograting[J]. Opt Express, 2005, 30(12): 1434-1436.

, , , , , . 基于二氧化硅薄膜夹层式亚波长金属光栅的宽波段太赫兹偏振分束器[J]. 红外与激光工程, 2019, 48(5): 0520003. Zhang Yelan, Zhang Kun, Kong Weijin, Li Caiyu, Xia Feng, Yun Maojin. Broadband terahertz polarization beam splitter based on subwavelength grating sandwiched between silica layers[J]. Infrared and Laser Engineering, 2019, 48(5): 0520003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!