应用激光, 2019, 39 (1): 143, 网络出版: 2019-04-16   

非线性放大环路反射镜锁模低重频全保偏光纤激光器

Nonlinear Amplifying Loop Mirror Mode-locked All-polarization-maintaining Fiber Laser with Low Repetition Rate
作者单位
华南师范大学信息光电子科技学院, 广东 广州510006
摘要
介绍了一种非线性放大环路反射镜锁模的低重复频率振荡腔和两级光纤放大器的全保偏光纤激光器系统。实验结果表明, 振荡腔输出是具有极大啁啾的稳定锁模脉冲, 脉冲宽度为90.25 ps, 对应的傅里叶变换极限为141 fs, 实际可压缩到431 fs, 中心波长1 064 nm, 3 db光谱宽度为10.4 nm。经过两级放大器后脉冲平均功率可放大至2.1 W, 使用光栅对进行压缩后输出平均功率为1.5 W, 脉冲宽度为417 fs。整个系统不用经过声光调制器降低重频就能获得较低重复频率、高能量的脉冲输出, 是提高脉冲能量的一种新的思路, 也为锁模激光器的小型化提供了便利。
Abstract
An all polarization-maintaining fiber laser system consisting of a low repetition rate mode-locked oscillator based on nonlinear amplified loop mirror cascaded with two-stage amplifiers are introduced. The experimental result shows that the output of the oscillating cavity is a stable mode-locked pulse with a maximum chirp, the pulse width is 90.25 ps, the corresponding Fourier transform limit is 141 fs, and it can be compressed to 431 fs with a center wavelength of 1064 nm and a 3 db spectral width of 10.4 nm. After the two-stage amplifier, the pulse average power can be amplified to 2.1 W, and the average output power is 1.5 W and the pulse width is 417 fs after compression using the grating pair. The whole system can obtain low repetition rate and high energy pulses output without passing through the acousto-optic modulator, which is a new idea to improve the pulse energy, and also facilitates the miniaturization of the mode-locked laser.
参考文献

[1] 赵明, 郝强, 郭政儒, 等.结构紧凑的kHz重复频率光纤固体皮秒激光光源[J].中国激光, 2018, 45(4): 89-95.

    ZHAO MING, HAO QIANG, GUO ZHENGRU, et al.Compact fiber-solid picosecond laser source with kilohertz repetition rate[J].Chinese Journal of Lasers, 2018, 45(4): 89-95.

[2] COUDERC V, ALBER, BARTHELEMY P H P A.Low repetition rate of a mode locked ND:YAG laser using quadratic polarization switching[J].Optics Communications, 2003, 220(5): 413-416.

[3] PAPADOPOULOS D N, DRUON F, BOUDEILE J, et al.Low-repetition-rate femtosecond operation in extended-cavity mood-locked Yb:CALGO laser[J].Optics Letter, 2009, 34(2): 196-198.

[4] 陈炯, 贾东方, 杨敬文, 等.超低重复频率全光纤被动锁模掺铒光纤激光器[J].中国激光, 2012, 39(6): 22-24.

    CHEN JIONG, JIA DONGFANG, YANG JINGWEN, et al.All-fiber passively mode-locked erbium-doped fiber laser with ultra-low repetition rate[J].Chinese Journal of Lasers, 2012, 39(6): 22-24.

[5] BOWEN P, SINGH H, RUNGE A, et al.Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser at 1060 nm[J].Optics Communications, 2016(364): 181-184.

[6] 李平雪, 王晓晓, 苏宁, 等.高重复频率宽光谱皮秒脉冲全光纤掺镱激光器[J].中国激光, 2017, 44(2): 182-188.

    LI PINGXUE, WANG XIAOXIAO, SU NING, et al.Picosecond pulsed all-fiber Yb-doped laser with high repetition rate and wide spectrum[J].Chinese Journal of Lasers, 2017, 44(2): 182-188.

[7] 白云生, 陈旭涛, 陈家旺, 等.时分复制技术皮秒脉冲光纤放大器数值研究[J].中国激光, 2017, 44(2): 206-212.

    BAI YUNSHENG, CHEN XUTAO, CHEN JIAWANG, et al.Numerical study on picosecond pulse fiber amplifier based on divided-pulse amplification technique[J].Chinese Journal of Lasers, 2017, 44(2): 206-212.

[8] OU SHANGMING, LIU GUANYU, GUO LIANG, et al.870 fs, 448 kHz pulses from an all-polarization-maintaining Yb-doped fiber laser with a nonlinear amplifying loop mirror[J].Applied Optics, 2018, 57(18): 5068-5071.

[9] 陈国梁.新型被动锁模光纤激光器研究[D].合肥: 中国科学技术大学, 2011: 260-322.

    CHEN GUOLIANG.Study on a novel passive mode-locked fiber laser[D].Hefei: University of Science and Technology of China, 2011: 260-322.

[10] 宋锐, 陈胜平, 侯静, 等.超低频率全正色散半导体可饱和吸收镜被动锁模光纤激光器[J].强激光与粒子束, 2011, 23(9): 2315-2318.

    SONG RUI, CHEN SHENGPING, HOU JING, et al.Ultralow repetition rate all-normal-dispersion passively mode-locked fiber laser based on SESAM[J].High Power Laser and Particle Beams, 2011, 23(9): 2315-2318.

[11] AGUERGARAY C, HAWKER R, RUNGE A F J, et al.120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser[J].Applied Physics Letters, 2013, 103(12): 3550-3554.

[12] FERMANN M E, HABERL F, HOFER M, et al.Nonlinear amplifying loop mirror[J].Optics Letters, 1990, 15(13): 752-754.

[13] TZELEPIS V, SPHICOPOULOS T, CAROUBALOS C.Passive harmonic mode-locking in all-fibre soliton laser: energy states and stability aspects[J].IEEE Photonics Technology Letters, 2002, 6(1): 47-49.

[14] 樊国丽, 赵尚弘, 周万银.光纤放大器的研究动态[J].半导体技术, 2005, 30(11): 1-3.

    FAN GUOLI, ZHAO SHANGHONG, ZHOU WANGYING.Recent development of optical fiber amplifier[J].Semiconductor Technology, 2005, 30(11): 1-3.

[15] FERMANN M E, KRUGLOV V I, THOMSEN B C, et al.Self-similar propagation and amplification of parabolic pulses in optical fibers[J].Physical Review Letters, 2000, 84(26 Pt 1): 6010-6013.

[16] MARTIN E F, GALVANAUSKAS A, GREGG SUCHA.Ultrafast lasers technology and applications[M].USA: Marcet Dekker, Inc, 2011: 164-200.

[17] ERKINTALO M, AGUERGARAY C, RUNGE A, et al.Environmentally stable all-PM all-fiber giant chirp oscillator[J].Optics Express, 2012, 20(20): 22669-22674.

[18] AGUERGARAY C, BRODERICK N G R, ERKINTALO M, et al.Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror[J].Optics Express, 2012, 20(10): 10545.

[19] 连富强, 樊仲维, 白振岙, 等.基于1064nm光纤皮秒种子源的Nd:YAG再生放大器[J].物理学报, 2014, 63(13): 176-180.

    LIAN FUQIANG, FAN ZHONGWEI, BAI ZHENAO, et al.A Nd:TAG regenerative amplifier seeded by 1064 nm picosecond fiber[J] Acta Physica Sinica, 2014, 63(13): 176-180.

[20] 李晶.高功率大模场光纤的光传输放大特性研究[D].绵阳: 中国工程物理研究院, 2011.

    LI JING.Study on optical transmission and amplification characteristics of high power and large mode fibers[D].Mianyang: China Academy of Engineering Physics, 2011.

[21] 张志刚.飞秒激光技术[M].北京: 科学出版社, 2017: 146-203.

    ZHANG ZHIGANG.Femtosecond laser technology[M].Beijing: Science Press, 2017: 146-203.

[22] ZHOU S, KUZNETSOVA L, CHONG A, et al.Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers[J].Optics Express, 2005, 13(13): 4869-4877.

梁纯佳, 郭亮, 欧尚明, 张庆茂. 非线性放大环路反射镜锁模低重频全保偏光纤激光器[J]. 应用激光, 2019, 39(1): 143. Liang Chunjia, Guo Liang, Ou Shangming, Zhang Qingmao. Nonlinear Amplifying Loop Mirror Mode-locked All-polarization-maintaining Fiber Laser with Low Repetition Rate[J]. APPLIED LASER, 2019, 39(1): 143.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!