激光与光电子学进展, 2014, 51 (9): 090004, 网络出版: 2014-08-15   

多波长掺铒光纤激光器的研究进展 下载: 924次

Research Progress of Multi-Wavelength Erbium-Doped Fiber Lasers
苏炜跃 1,2,*吴锐欢 1,2
作者单位
1 华南师范大学信息光电子科技学院, 广东广州510006
2 华南师范大学广东省光电信息实验教学示范中心, 广东广州510006
摘要
多波长掺铒光纤激光器(MW-EDFL)在密集波分复用(DWDM)系统中具有重要作用,是近年来光纤通信领域的研究热点。回顾了多波长掺铒光纤激光器的发展历史,介绍了多波长掺铒光纤激光器的工作原理,包括其抑制模式竞争、实现多波长输出的方式,着重介绍了多种梳状滤波器的原理,包括Lyot 滤波器、Sagnac 干涉环、Mach-Zehnder 干涉仪。综述了近年来实现多波长掺铒光纤激光器的研究成果,分析了各个实现方案的优劣特性,并对其应用和发展前景进行了展望。
Abstract
Multi-wavelength erbium- doped fiber lasers (MW- EDFL), which play an important role in dense wavelength division multiplexing (DWDM), have been the focus of optical communications in recent years. The history of MW- EDFL is reviewed briefly. The operating principle of MW- EDFL is reviewed, including the suppression of mode competition to obtain the multi-wavelength output. The principle of comb filters, including the Lyot filter, Sagnac interference loop and Mach- Zehnder interferometer, is discussed in detail. The recent research achievements of MW- EDFL are introduced and their pros and cons are analyzed. Moreover, their promising future is presented.
参考文献

[1] Elmirghani J M H, Mouftah H T. All-optical wavelength conversion: Technologies and applications in DWDM networks[J]. Communications Magazine, IEEE, 2000, 38(3): 86-92.

[2] 吴重庆, 胡卫生. 光纤光学与光通信专题前言[J]. 光学学报, 2013, 33(7): 0000.

    Wu Chongqing, Hu Weisheng. Project introduction of fiber optics and optical communication[J]. Acta Optica Sinica,2013, 33(7): 0000.

[3] Han Y G, Tran T V A, Kim S H, et al.. Multiwavelength Raman- fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature[J]. Opt Lett, 2005, 30(11): 1282-1284.

[4] 孙浩, 忽满利, 乔学光, 等. 基于纤芯失配多模干涉的光纤折射率传感器[J]. 中国激光, 2012, 39(2): 0205001.

    Sun Hao, Hu Manli, Qiao Xueguang, et al.. Fiber refractive index sensor based on fiber core mismatch multimode interference[J]. Chinese J Lasers, 2012, 39(2): 0205001.

[5] 廖国珍, 张军, 蔡祥, 等. 基于石墨烯的全光纤温度传感器的研究[J]. 光学学报, 2013, 33(7): 0706004.

    Liao Guozhen, Zhang Jun, Cai Xiang, et al.. All- fiber temperature sensor based on graphene[J]. Acta Optica Sinica,2013, 33(7): 0706004.

[6] Fujiwara M, Goodman M S, O′Mahony M J, et al.. Guest editorial multiwavelength optical technology and networks[J].Journal of Lightwave Technology, 1996, 14(6): 932.

[7] 王军利, 吕志国, 卜祥宝. 稀土离子掺杂飞秒光纤激光器最新进展[J]. 激光与光电子学进展, 2012, 49(10): 100006.

    Wang Junli, Lü Zhiguo, Bo Xiangbao. Recent progress on rare earth doped femtosecond fiber lasers[J]. Laser & Optoelectronics Progress, 2012, 49(10): 100006.

[8] Ajiya M, Almansoori M H, Mahdi M A. Widely tunable linear- cavity multiwavelength fiber laser with distributed Brillouin scattering[J]. Chin Opt Lett, 2011, 8(3): 51-53.

[9] 缪雪峰, 王天枢, 周雪芳, 等. 一种可调谐的多波长布里渊掺铒光纤激光器[J]. 中国激光, 2012, 39(6): 0602010.

    Miao Xuefeng, Wang Tianshu, Zhou Xuefang, et al.. A tunable multiwavelength Brillouin-erbium fiber laser[J]. Chinese J Lasers, 2012, 39(6): 0602010.

[10] Chow J, Town G, Eggleton B, et al.. Multiwavelength generation in an erbium- doped fiber laser using in- fiber comb filters[J]. Photon Technol Lett, 1996, 8(1): 60-62.

[11] Miyazaki T, Edagawa N, Yamamoto S, et al.. A multiwavelength fiber ring- laser employing a pair of silica- based arrayed-waveguide-gratings[J]. Photon Technol Lett, 1997, 9(7): 910-912.

[12] Zhao Y, Shu C. A fiber laser for effective generation of tunable single- and dual- wavelength mode- locked optical pulses[J]. Appl Phys Lett, 1998, 72(13): 1556-1558.

[13] Zhang Z, Zhan L, Xu K, et al.. Multiwavelength fiber laser with fine adjustment, based on nonlinear polarization rotation and birefringence fiber filter[J]. Opt Lett, 2008, 33(4): 324-326.

[14] Sova R M, Kim C S, Kang J U, et al.. Tunable dual- λ fiber ring laser based on 2nd λ order Sagnac-Lyot fiber filter[C].Lasers and Electro-Optics, IEEE, 2002. 444-445.

[15] Yu X, Liu D, Dong H, et al.. Temperature stability improvement of a multiwavelength Sagnac loop fiber laser using a high-birefringent photonic crystal fiber as a birefringent component[J]. Opt Engng, 2006, 45(4): 044201.

[16] An H L, Lin X Z, Pun E Y B, et al.. Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach-Zehnder comb filter[J]. Opt Commun, 1999, 169(1): 159-165.

[17] Shu X, Jiang S, Huang D. Fiber grating Sagnac loop and its multiwavelength-laser application[J]. Photon Technol Lett,2000, 12(8): 980-982.

[18] Liu X, Zhan L, Luo S, et al.. Multiwavelength erbium- doped fiber laser based on a nonlinear amplifying loop mirror assisted by un-pumped EDF[J]. Opt Express, 2012, 20(7): 7088-7094.

[19] Feng X, Tam H, Wai P K A. Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation[J]. Opt Express, 2006, 14(18): 8205-8210.

[20] Feng X, Tam H, Liu H, et al.. Multiwavelength erbium- doped fiber laser employing a nonlinear optical loop mirror[J].Opt Commun, 2006, 268(2): 278-281.

[21] Luo Z C, Luo A P, Xu W C. Tunable and switchable multiwavelength passively mode- locked fiber laser based on SESAM and inline birefringence comb filter[J]. Photonics Journal, IEEE, 2011, 3(1): 64-70.

[22] Ji F, Xin L, Ming H. Passively mode-locked fiber laser using SESAM[C]. SPIE, 2007. 6838: 683807.

[23] McFerran J J, Nenadovic L, Swann W C, et al.. A passively mode- locked fiber laser at 1.54 μm with a fundamental repetition frequency reaching 2 GHz[J]. Opt Express, 2007, 15(20): 13155-13166.

[24] Zhao L M, Lu C, Tam H Y. High fundamental repetition rate fiber lasers operated in strong normal dispersion regime[J].Photon Technol Lett, 2009, 21(11): 724-726.

[25] Luo Z C, Luo A P, Xu W C. Tunable and switchable all-fiber comb filter using a PBS-based two-stage cascaded Mach-Zehnder interferometer[J]. Opt Commun, 2011, 284(18): 4167-4170.

[26] Li L, Yu Y, Ye G J, et al.. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377.

苏炜跃, 吴锐欢. 多波长掺铒光纤激光器的研究进展[J]. 激光与光电子学进展, 2014, 51(9): 090004. Su Weiyue, Wu Ruihuan. Research Progress of Multi-Wavelength Erbium-Doped Fiber Lasers[J]. Laser & Optoelectronics Progress, 2014, 51(9): 090004.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!