中国激光, 2018, 45 (4): 0402005, 网络出版: 2018-04-13   

激光熔覆W-Cu复合材料的组织形貌与工艺参数的相关性 下载: 791次

Correlation between Process Parameters and Microstructure Morphologies of W-Cu Composites Fabricated by Laser Cladding
作者单位
南京理工大学材料科学与工程学院, 江苏 南京 210094
引用该论文

顾赛男, 王广原, 秦渊, 杨森. 激光熔覆W-Cu复合材料的组织形貌与工艺参数的相关性[J]. 中国激光, 2018, 45(4): 0402005.

Gu Sainan, Wang Guangyuan, Qin Yuan, Yang Sen. Correlation between Process Parameters and Microstructure Morphologies of W-Cu Composites Fabricated by Laser Cladding[J]. Chinese Journal of Lasers, 2018, 45(4): 0402005.

参考文献

[1] Hamidi A G, Arabi H, Rastegari S. A feasibility study of W-Cu composites production by high pressure compression of tungsten powder[J]. International Journal of Refractory Metals & Hard Materials, 2011, 29(1): 123-127.

[2] Ibrahim H, Aziz A, Rahmat A. Enhanced liquid-phase sintering of W-Cu composites by liquid infiltration[J]. International Journal of Refractory Metals & Hard Materials, 2014, 43(3): 222-226.

[3] 周武平, 吕大铭. 钨铜材料应用和生产的发展现状[J]. 粉末冶金材料科学与工程, 2005, 10(1): 21-25.

    Zhou W P, Lü D M. Development of application and production in W-Cu materials[J]. Materials Science and Engineering of Powder Metallurgy, 2005, 10(1): 21-25.

[4] Yang X, Liang S, Wang X, et al. Effect of WC and CeO2 on microstructure and properties of W-Cu electrical contact material[J]. International Journal of Refractory Metals & Hard Materials, 2010, 28(2): 305-311.

[5] Zheng L L, Liu J X, Li S K, et al. Investigation on preparation and mechanical properties of W-Cu-Zn alloy with low W-W contiguity and high ductility[J]. Materials & Design, 2015, 86: 297-304.

[6] Wei X X, Tang J C, Ye N, et al. A novel preparation method for W-Cu composite powders[J]. Journal of Alloys and Compounds, 2016, 661: 471-475.

[7] 范莉, 李业建. W-Cu复合材料的应用及制造技术[J]. 电工材料, 2013( 3): 25- 31.

    FanL, Li YJ. Application and manufacturing technology of W-Cu composite material[J]. Electrical Engineering Materials, 2013( 3): 25- 31.

[8] 黄卫东. 激光立体成形——高性能致密金属零件的快速自由成形[M]. 西安: 西北工业大学出版社, 2007: 5- 10.

[9] Gu D D, Shen Y F. Influence of Cu-liquid content on densification and microstructure of direct laser sintered submicron W-Cu/micron Cu powder mixture[J]. Materials Science and Engineering A, 2008, 489(1/2): 169-177.

[10] Gu D D, Shen Y F. Effects of processing parameters on consolidation and microstructure of W-Cu components by DMLS[J]. Journal of Alloys and Compounds, 2009, 473(1/2): 107-115.

[11] Gu D D, Shen Y F, Wu X J. Formation of a novel W-rim/Cu-core structure during direct laser sintering of W-Cu composite system[J]. Materials Letters, 2008, 62(12/13): 1765-1768.

[12] Yan A R, Wang Z Y, Yang T T, et al. Microstructure, thermal physical property and surface morphology of W-Cu composite fabricated via selective laser melting[J]. Materials & Design, 2016, 109: 79-87.

[13] Song C, Yang Y, Liu Y, et al. Study on manufacturing of W-Cu alloy thin wall parts by selective laser melting[J]. International Journal of Advanced Manufacturing Technology, 2015, 78(5/6/7/8): 885-893.

[14] Wang M B, Li R D, Yuan T C, et al. Selective laser melting of W-Ni-Cu composite powder: Densification, microstructure evolution and nano-crystalline formation[J]. International Journal of Refractory Metals & Hard Materials, 2018, 70: 9-18.

[15] 严深平, 张安峰, 李涤尘, 等. 粉末混合均匀性及W粉形态对激光直接成形W-Cu复合材料成形质量的影响[J]. 中国激光, 2017, 44(6): 0602001.

    Yan S P, Zhang A F, Li D C, et al. Effects of powder-mixing homogeneity and W-powder morphology on forming quality in laser direct forming of W-Cu composites[J]. Chinese Journal of Lasers, 2017, 44(6): 0602001.

[16] 闫岸如, 杨恬恬, 王燕灵, 等. 钨粉粒度和形状对选区激光熔化W-xCu成形与显微组织的影响[J]. 中国激光, 2016, 43(2): 0203007.

    Yan A R, Yang T T, Wang Y L, et al. Effect of tungsten powder particle size and shape on consolidation and microstructure of W-xCu composites by selective laser melting[J]. Chinese Journal of Lasers, 2016, 43(2): 0203007.

[17] 吕大铭. 钨铜复合材料研究的新进展[J]. 中国钨业, 2000, 15(6): 27-31.

    Lü D M. The new progress of W-Cu composite materials[J]. China Tungsten Industry, 2000, 15(6): 27-31.

[18] Abbas G. West D R F. Laser surface cladding of stellite and stellite-SiC composite deposits for enhanced hardness and wear[J]. Wear, 1991, 143(2): 353-363.

[19] 严铄. 纯铜表面张力的温度系数[J]. 金属学报, 1965, 8(2): 251-258.

    Yan S. The temperature coefficient of surface tension of pure copper[J]. Acta Metallurgica Sinica, 1965, 8(2): 251-258.

[20] TakamichiI, Roderick I L G. The physical properties of liquid metals[M]. New York: Oxford University Press, 1993.

[21] 强文江, 吴承建. 金属材料学(第3版)[M]. 北京: 冶金工业出版社, 2016: 14.

    Qiang WJ, Wu CJ. Metal material science (3th)[M]. Beijing: Metallurgical Industry Press, 2016: 14.

[22] 高海燕. 高强高导形变Cu-Fe-Ag原位复合材料制备技术基础[D]. 上海: 上海交通大学, 2007.

    Gao HY. Study on high-strength and high conductivity deformation processed Cu-Fe-Ag in situ composites[D]. Shanghai: Shanghai Jiao Tong University, 2007.

[23] Yin H B, Emi T. Marangoni flow at the gas/melt interface of steel[J]. Metallurgical and Materials Transactions B, 2003, 34(5): 483-493.

[24] Qu D D, Zhou Z J, Tan J, et al. Characterization of W/Fe functionally graded materials manufactured by resistance sintering under ultra-high pressure[J]. Fusion Engineering and Design, 2015, 91: 21-24.

顾赛男, 王广原, 秦渊, 杨森. 激光熔覆W-Cu复合材料的组织形貌与工艺参数的相关性[J]. 中国激光, 2018, 45(4): 0402005. Gu Sainan, Wang Guangyuan, Qin Yuan, Yang Sen. Correlation between Process Parameters and Microstructure Morphologies of W-Cu Composites Fabricated by Laser Cladding[J]. Chinese Journal of Lasers, 2018, 45(4): 0402005.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!