Photonics Research, 2020, 8 (10): 10001624, Published Online: Sep. 29, 2020   

Learning-based phase imaging using a low-bit-depth pattern Download: 957次

Author Affiliations
1 Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
2 Department of Bioengineering, University of California, Los Angeles, California 90095, USA
3 Shanghai Aerospace Electronic Technology Institute, Shanghai 201109, China
Copy Citation Text

Zhenyu Zhou, Jun Xia, Jun Wu, Chenliang Chang, Xi Ye, Shuguang Li, Bintao Du, Hao Zhang, Guodong Tong. Learning-based phase imaging using a low-bit-depth pattern[J]. Photonics Research, 2020, 8(10): 10001624.

References

[1] J. W. Goodman, R. Lawrence. Digital image formation from electronically detected holograms. Appl. Phys. Lett., 1967, 11: 77-79.

[2] E. Cuche, F. Bevilacqua, C. Depeursinge. Digital holography for quantitative phase-contrast imaging. Opt. Lett., 1999, 24: 291-293.

[3] C. Mann, L. Yu, C. Lo, M. Kim. High-resolution quantitative phase-contrast microscopy by digital holography. Opt. Express, 2005, 13: 8693-8698.

[4] P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, C. Depeursinge. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett., 2005, 30: 468-470.

[5] M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, P. Ferraro. Digital holography, a metrological tool for quantitative analysis: trends and future applications. Opt. Lasers Eng., 2018, 104: 32-47.

[6] M. Paturzo, P. Memmolo, A. Finizio, R. Nasanen, T. J. Naughton, P. Ferraro. Synthesis and display of dynamic holographic 3D scenes with real-world objects. Opt. Express, 2010, 18: 8806-8815.

[7] B. Javidi, T. Nomura. Securing information by use of digital holography. Opt. Lett., 2000, 25: 28-30.

[8] T. Gureyev, K. Nugent. Rapid quantitative phase imaging using the transport of intensity equation. Opt. Commun., 1997, 133: 339-346.

[9] J. C. Petruccelli, L. Tian, G. Barbastathis. The transport of intensity equation for optical path length recovery using partially coherent illumination. Opt. Express, 2013, 21: 14430-14441.

[10] S. S. Kou, L. Waller, G. Barbastathis, C. J. R. Sheppard. Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging. Opt. Lett., 2010, 35: 447-449.

[11] S. Marchesini, H. Chapman, S. Hau-Riege, R. London, A. Szoke, H. He, M. Howells, H. Padmore, R. Rosen, J. Spence, U. Weierstall. Coherent X-ray diffractive imaging: applications and limitations. Opt. Express, 2003, 11: 2344-2353.

[12] A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, M. Segev. Sparsity-based single-shot subwavelength coherent diffractive imaging. Nat. Mater., 2012, 11: 455-459.

[13] R. Horisaki, Y. Ogura, M. Aino, J. Tanida. Single-shot phase imaging with a coded aperture. Opt. Lett., 2014, 39: 6466-6469.

[14] R. Horisaki, R. Egami, J. Tanida. Single-shot phase imaging with randomized light (spiral). Opt. Express, 2016, 24: 3765-3773.

[15] R. Horisaki, K. Fujii, J. Tanida. Diffusion-based single-shot diffraction tomography. Opt. Lett., 2019, 44: 1964-1967.

[16] M. Teague. Deterministic phase retrieval–a Green-function solution. J. Opt. Soc. Am., 1983, 73: 1434-1441.

[17] R. Gerchberg, W. Saxton. Practical algorithm for determination of phase from image and diffraction plane pictures. Optik, 1972, 35: 237-246.

[18] J. Fienup. Phase retrieval algorithms: a comparison. Appl. Opt., 1982, 21: 2758-2769.

[19] O. Katz, P. Heidmann, M. Fink, S. Gigan. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics, 2014, 8: 784-790.

[20] Y. Wu, M. K. Sharma, A. Veeraraghavan. WISH: wavefront imaging sensor with high resolution. Light Sci. Appl., 2019, 8: 44.

[21] J.-T. Lu, A. S. Goy, J. W. Fleischer. Nonlinear imaging using object-dependent illumination. Sci. Rep., 2019, 9: 725.

[22] S. W. Paine, J. R. Fienup. Machine learning for improved image-based wavefront sensing. Opt. Lett., 2018, 43: 1235-1238.

[23] Y. Nishizaki, M. Valdivia, R. Horisaki, K. Kitaguchi, M. Saito, J. Tanida, E. Vera. Deep learning wavefront sensing. Opt. Express, 2019, 27: 240-251.

[24] G. Ju, X. Qi, H. Ma, C. Yan. Feature-based phase retrieval wavefront sensing approach using machine learning. Opt. Express, 2018, 26: 31767-31783.

[25] Q. Xin, G. Ju, C. Zhang, S. Xu. Object-independent image-based wavefront sensing approach using phase diversity images and deep learning. Opt. Express, 2019, 27: 26102-26119.

[26] Y. Rivenson, Y. Zhang, H. Gnaydin, D. Teng, A. Ozcan. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl., 2018, 7: 17141.

[27] Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Gunaydin, X. Lin, A. Ozcan. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery. Optica, 2018, 5: 704-710.

[28] K. Wang, J. Dou, Q. Kemao, J. Di, J. Zhao. Y-net: a one-to-two deep learning framework for digital holographic reconstruction. Opt. Lett., 2019, 44: 4765-4768.

[29] H. Wang, M. Lyu, G. Situ. eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction. Opt. Express, 2018, 26: 22603-22614.

[30] A. Sinha, J. Lee, S. Li, G. Barbastathis. Lensless computational imaging through deep learning. Optica, 2017, 4: 1117-1125.

[31] M. J. Cherukara, Y. S. G. Nashed, R. J. Harder. Real-time coherent diffraction inversion using deep generative networks. Sci. Rep., 2018, 8: 16520.

[32] S. Li, M. Deng, J. Lee, A. Sinha, G. Barbastathis. Imaging through glass diffusers using densely connected convolutional networks. Optica, 2018, 5: 803-813.

[33] Y. Sun, Z. Xia, U. S. Kamilov. Efficient and accurate inversion of multiple scattering with deep learning. Opt. Express, 2018, 26: 14678-14688.

[34] Y. Li, Y. Xue, L. Tian. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica, 2018, 5: 1181-1190.

[35] Y. Sun, J. Shi, L. Sun, J. Fan, G. Zeng. Image reconstruction through dynamic scattering media based on deep learning. Opt. Express, 2019, 27: 16032-16046.

[36] B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, C. Moser. Multimode optical fiber transmission with a deep learning network. Light Sci. Appl., 2018, 7: 96.

[37] A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, I. Carron. Imaging with nature: compressive imaging using a multiply scattering medium. Sci. Rep., 2014, 4: 5552.

[38] M. Lyu, H. Wang, G. Li, S. Zheng, G. Situ. Learning-based lensless imaging through optically thick scattering media. Adv. Photon., 2019, 1: 036002.

[39] U. Kurum, P. R. Wiecha, R. French, O. L. Muskens. Deep learning enabled real time speckle recognition and hyperspectral imaging using a multimode fiber array. Opt. Express, 2019, 27: 20965-20979.

[40] H. Liu, Z. Liu, M. Chen, S. Han, L. V. Wang. Physical picture of the optical memory effect. Photon. Res., 2019, 7: 1323-1330.

[41] I. Freund, M. Rosenbluh, S. Feng. Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett., 1988, 61: 2328-2331.

[42] E. Edrei, G. Scarcelli. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media. Sci. Rep., 2016, 6: 33558.

[43] L. Li, Q. Li, S. Sun, H.-Z. Lin, W.-T. Liu, P.-X. Chen. Imaging through scattering layers exceeding memory effect range with spatial-correlation-achieved point-spread-function. Opt. Lett., 2018, 43: 1670-1673.

[44] W. Yang, G. Li, G. Situ. Imaging through scattering media with the auxiliary of a known reference object. Sci. Rep., 2018, 8: 9614.

[45] P. Berto, H. Rigneault, M. Guillon. Wavefront sensing with a thin diffuser. Opt. Lett., 2017, 42: 5117-5120.

[46] RonnebergerO.FischerP.BroxT., “U-net: convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention, PT III, Lecture Notes in Computer Science (Springer, 2015), Vol. 9351, pp. 234241.

[47] W. Zhou, A. Bovik, H. Sheikh, E. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process., 2004, 13: 600-612.

[48] HuangG. B.RameshM.BergT.Learned-MillerE., “Labeled faces in the wild: a database for studying face recognition in unconstrained environments,” Technical Report 07-49 (University of Massachusetts, 2007).

[49] DengJ.DongW.SocherR.LiL.-J.LiK.Fei-FeiL., “ImageNet: a large-scale hierarchical image database,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2009), pp. 248255.

[50] R. B. Jenkin, S. Triantaphillidou, M. A. Richardson. Effective pictorial information capacity as an image quality metric. Proc. SPIE, 2007, 6494: 64940O.

[51] P. Hoyer. Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res., 2004, 5: 1457-1469.

Zhenyu Zhou, Jun Xia, Jun Wu, Chenliang Chang, Xi Ye, Shuguang Li, Bintao Du, Hao Zhang, Guodong Tong. Learning-based phase imaging using a low-bit-depth pattern[J]. Photonics Research, 2020, 8(10): 10001624.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!