红外与毫米波学报, 2018, 37 (2): 140, 网络出版: 2018-05-29  

全息光刻制备LC-DFB及光栅刻蚀优化

Laterally-coupled distributed feedback lasers with optimized gratings by holographic lithography etching
作者单位
1 北京航空航天大学 物理科学与核能工程学院,北京 1000191
2 中国科学院半导体研究所 超晶格实验室,北京 100083
3 中国科学技术大学 量子信息与量子科技前沿协同创新中心,安徽 合肥 230026
摘要
成功制备出室温激射波长为2 μm的GaSb基侧向耦合分布反馈量子阱激光器.采用全息曝光及电感耦合等离子体刻蚀技术制备二阶布拉格光栅.优化了光栅制备的刻蚀条件,并获得室温2 μm单纵模激射.激光器输出光功率超过5 mW,最大边模抑制比达到24 dB.
Abstract
GaSb-based laterally coupled distributed feedback (LC-DFB) quantum well lasers with a wavelength of 2 μm were successfully prepared. Second order Bragg gratings are fabricated by holographic lithography and inductively coupled plasma etching (ICP). The etching conditions for grating preparation are optimized and a single longitudinal mode lasing at room temperature is obtained. The room temperature peak power output per facet exceeds 5 mW with a maximum side-mode suppression ratio of more than 24 dB.
参考文献

[1] Budinova G, Salva J, Volka K. Application of molecular spectroscopy in the mid-infrared region to the determination of glucose and cholesterol in whole blood and in blood serum [J]. Applied Spectroscopy, 1997, 51(5):631-635.

[2] Schiff H I, Mackay G I, Bechara J. The use of tunable diode laser absorption spectroscopy for atmospheric measurements [J]. Research on Chemical Intermediates, 1994, 20(3-5):525-556.

[3] Lackner M. Tunable diode laser absorption spectroscopy (TDLAS) in the process industries – a review [J]. Reviews in Chemical Engineering, 2011, 23(2):65-147.

[4] Zhang Y G, Tian Z B, Zhang X J, et al. An innovative gas sensor with on-chip reference using monolithic twin laser[J].Chinese Physics Letters, 2007, 24(10):2839-2841.

[5] Diba A S. Widely tunable sampled grating distributed bragg reflector quantum cascade laser for gas spectroscopy applications [J]. Dissertations & Theses-Gradworks, 2015.

[6] LUO Yi, HUANG Jin, SUN Chang-Zheng. Narrow linewidth semiconductor laser diodes[J]. Infrared and Laser Engineering(罗毅, 黄缙, 孙长征. 窄线宽半导体激光器件. 红外与激光工程), 2007, 36(2):147-151.

[7] Briggs R M, Frez C, Ksendzov A, et al. Laterally coupled distributed-feedback GaSb-based diode lasers for atmospheric gas detection at 2 μm[J]. Lasers and Electro-Optics. IEEE, 2012:1-2.

[8] Akiba S, Utaka K, Sakai K, et al. Distributed feedback InGaAsP/InP lasers with window region emitting at 1.5 μm range [J]. IEEE Journal of Quantum Electronics, 1983, 19(6):1052-1056.

[9] Martin R D, Forouhar S, Keo S, et al. CW performance of an InGaAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode [J]. IEEE Photonics Technology Letters, 1995, 7(3):244-246.

[10] Apiratikul P, He L, Richardson C J K. 2μm laterally coupled distributed-feedback GaSb-based metamorphic laser grown on a GaAs substrate [J]. Applied Physics Letters, 2013, 102(23):031107.

[11] Telkkl J, Karinen J, Viheril J, et al. Narrow-linewidth distributed feedback lasers with laterally coupled ridge-waveguide surface gratings fabricated using nanoimprint lithography [J]. Semiconductor Conference. IEEE Xplore, 2010:131-141.

[12] Dridi K, Benhsaien A, Hall T, et al. 1.55μm laterally coupled ridge-waveguide DFB lasers with third-order surface grating [J]. Proceedings of SPIE-The International Society for Optical Engineering, 2012, 8412:84121R-84121R-6.

[13] Rner K, Hümmer M, Benkert A, et al. Long-wavelength GaInAsSb/AlGaAsSb DFB lasers emitting near 2.6 μm [J]. Physica E: Low-dimensional Systems and Nanostructures, 2005, 30(1–2):159-163.

[14] Martin R D, Forouhar S, Keo S, et al. InGaAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode [J]. Electronics Letters, 1994, 30(13):1058-1060.

[15] Chen T R, Hsin W, Chen B, et al. Wide temperature range operation of DFB Lasers at 1310 and 1490nm [J]. Semiconductor Laser Conference, 2008. Islc 2008. IEEE, International. IEEE, 2008:81-82.

[16] LIAO Yong-Ping, ZHANG Yu, YANG Cheng-Ao, et al. High-power, high-efficient GaSb-based quantum well laser diodes emitting at 2 μm[J]. Journal of Infrared and Millimeter Waves (廖永平, 张宇, 杨成奥,等. 大功率高效率2μm锑化镓基量子阱激光器. 红外与毫米波学报), 2016, 35(6):672-675.

[17] Briggs R M, Frez C, Ksendzov A, et al. Laterally coupled distributed-feedback GaSb-based diode lasers for atmospheric Gas detection at 2 μm [J]. Lasers and Electro-Optics. IEEE, 2012:1-2.

[18] Viheril J, Haring K, Suomalainen S, et al. High spectral purity high-power GaSb-based DFB laser fabricated by nanoimprint lithography [J]. IEEE Photonics Technology Letters, 2016, 28(11):1233-1236.

[19] Jang S J, Yu J S, Lee Y T. Laterally coupled DFB lasers with self-aligned metal surface grating by holographic lithography [J]. IEEE Photonics Technology Letters, 2008, 20(7):514-516.

[20] Zhang Y, Wang G W, Tang B, et al. Molecular beam epitaxy growth of InGaSb/AlGaAsSb strained quantum well diode lasers [J]. Journal of Semiconductors, 2011, 32(10):103002.

[21] Fan Z F, Luo J S, Ye W H. Compressible Rayleigh-Taylor instability with preheat in inertial confinement fusion[J]. Chinese Physics Letters, 2007, 24(8):2308-2311.

[22] Deng L G, Rahman M, Berg J A V D, et al. Contribution of atomic and molecular ions to dry-etch damage [J]. Applied Physics Letters, 1999, 75(2):211-213.

[23] Rahman M. Channeling and diffusion in dry-etch damage [J]. Journal of Applied Physics, 1997, 82(5):2215-2224.

[24] Rahman M, Deng L G, Wilkinson C D W, et al. Studies of damage in low-power reactive-ion etching of III–V semiconductors[J]. Journal of Applied Physics, 2001, 89(4):2096-2108.

[25] Streifer W, Scifres D R, Burnham R. Coupled wave analysis of DFB and DBR lasers [J]. Quantum Electronics IEEE Journal of, 1977, 13(4):134-141.

[26] Yang C A, Zhang Y, Liao Y P, et al. 2-μm single longitudinal mode GaSb-based laterally coupled distributed feedback laser with regrowth-free shallow-etched gratings by interference lithography [J]. Chinese Physics B, 2016, 25(2):181-185.

[27] Zhang Y G, Zheng Y L, Lin C, et al. Continuous wave performance and tunability of MBE grown 2.1μm InGaAsSb/AlGaAsSb MQW lasers[J]. Chinese Physics Letters, 2006, 23(8):2262-2265.

[28] Reboul J R, Cerutti L, Rodriguez J B, et al. Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si [J]. Applied Physics Letters, 2011, 99(12):511.

[29] Jallipalli A, Nunna K, Kutty M N, et al. Compensation of interfacial states located inside the “buffer-free” GaSb/GaAs (001) heterojunction via δ-doping [J]. Applied Physics Letters, 2009, 95(7):683.

李欢, 杨成奥, 谢圣文, 黄书山, 柴小力, 张宇, 王金良, 牛智川. 全息光刻制备LC-DFB及光栅刻蚀优化[J]. 红外与毫米波学报, 2018, 37(2): 140. LI Huan, YANG Cheng-Ao, XIE Sheng-Wen, HUANG Shu-Shan, CHAI Xiao-Li, ZHANG Yu, WAGN Jin-Liang, NIU Zhi-Chuan. Laterally-coupled distributed feedback lasers with optimized gratings by holographic lithography etching[J]. Journal of Infrared and Millimeter Waves, 2018, 37(2): 140.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!