红外与激光工程, 2019, 48 (3): 0302004, 网络出版: 2019-04-06  

使用亚波长光栅器件产生圆柱型矢量光束

Generation of cylindrical vector beams by using subwavelength grating polarizer
作者单位
1 西北工业大学 电子信息学院, 陕西 西安 710072
2 浙江清华长三角研究院杭州分院, 浙江 杭州 310000
摘要
基于严格矢量衍射理论, 分析了亚波长光栅将圆偏光转化为线偏光的机理。根据分析的结果提出了一种利用光栅空间分布控制出射光偏振态分布的方法, 并使用该方法规设计了一类光栅区域呈多带环形分布的偏振器件。通过改变该型器件的环形光栅区域数量, 可以得到不同的偏振光束。通过对出射光束使用Richards-Wolf矢量衍射法进行数值分析, 得到了在大数值孔径条件下, 聚焦光束在焦点附近的归一化光强分布。其中大多数出射光束的焦点光强分布为平顶光斑, 光斑的最大径向半高全宽达到了1.541 λ。与同数值孔径下线偏光、径向偏振光及角向偏振光的聚焦光强分布具有明显区别。
Abstract
Based on the rigorous vectorial diffraction theory, the mechanism that the subwavelength gratings convert circular polarized light into linear polarized light was analyzed. Based on the analysis results, a design method of controlling polarization state of output beam with grating spatial distribution was proposed. Using this method, several subwavelength grating polarizers with annular gratings areas were designed. By changing the number of the annular gratings areas, different type of cylindrical vector beams can be obtained. Using the Richards-Wolf vectorial diffraction method, the amplitude and intensity distributions of the different components in the vicinity of focus were calculated on high numerical aperture condition. Most of the intensity distributions in the vicinity of focus were flattop distributions. The full width at half maxima of intensity is 1.541 λ in radial direction. Compared with other type of beams such as linearly polarized beam, radially polarized beam and azimuthally polarized beam, the optical performances of the output beams from the polarizers designed in this research are distinctly particular.
参考文献

[1] Stafeev S S, O′Faolain L, Kotlyar V V, et al. Tight focus of light using micropolarizer and microlens[J]. Applied Optics, 2015, 54(14): 4388-4394.

[2] Li Shujun, Jiang Huilin, Zhu Jingping, et al. Development status and key technologies of polarization imaging detection[J]. Chinese Optics, 2013, 6(6): 803-809. (in Chinese)

[3] Kraus M, Ahmed M A, Michalowski A, et al. Microdrilling in steel using ultrashort pulsed laser beam with radial and azimuthal polarization[J]. Optics Express, 2010, 18(21): 22305-22313.

[4] Liu Z, Jones P H. Optical manipulation using highly focused alternate radially and azimuthally polarized beams modulated by a devil's lens[J]. Journal of the Optical Society of America A, 2016, 33(12): 2501-2508.

[5] Guzman-Silva D, Brüning R, Zimmermann F, et al. Demonstration of local teleportation using classical entanglement[J]. Laser & Photonics Review, 2016, 10(2): 317-321.

[6] Niv A, Biener G, Kleiner V, et al. Formation of linearly polarized light with axial symmetry by use of space-variant subwavelength gratings[J]. Optics Letters, 2003, 28(7): 510-512.

[7] Doerr C R, Buhl L L. Circular grating coupler for creating focused azimuthally and radially polarized beams[J]. Optics Letters, 2011, 36(7): 1209-1211.

[8] Liu Jing, Liu Juan, Wang Yongtian, et al. Resonant properties of sub-wavelength metallic gratings[J]. Chinese Optics, 2011, 4(4): 363-368. (in Chinese)

[9] Ji Shuying, Kong Weijin, Li Na, et al. Subwavelength sandwiched metal polarizing beam grating for 800 nm[J]. Infrared and Laser Engineering, 2017, 46(8): 0820002. (in Chinese)

[10] Wu Na, Tan Xin, Yu Haili, et al. Design and fabrication of broadband holographic ion beam etching gratings[J]. Optics and Precision Engineering, 2015, 23(7): 1979-1982. (in Chinese)

[11] Kotlyar V V, Stafeev S S, Kotlyar M V, et al. Subwavelength micropolarizer in a gold film for visible light[J]. Applied Optics, 2016, 55(19): 5025-5032.

[12] Bomzon Z, Kleiner V, Hasman E. Computer-generated space-variant polarization elements with subwavelength metal stripes[J]. Optics Letters, 2001, 26(1): 33-35.

[13] Moharam M G, Gaylord T K. Rigorous coupled-wave analysis of planar-grating diffraction[J]. Journal of the Optical Society of America A, 1981, 71(7): 811-818.

[14] Yang Liang, Li Yanqiu, Ma Xu, et al. Rigorous coupled wave analysis of grating-embedded multilayer structure conical diffraction[J]. Infrared and Laser Engineering, 2014, 43(6): 1900-1902. (in Chinese)

[15] Ghadyani Z, Vartiainen I, Harder I, et al. Concentric ring metal grating for generating radially polarized light[J]. Applied Optics, 2011, 50(16): 2451-2457.

[16] Zhan Q. Cylindrical vector beam: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.

[17] Wei Datong, Zhang Yunhai, Tang Yuguo. Effect of polarization, phase and amplitude on depletion focus spot in STED[J]. Optics and Precision Engineering, 2014, 22(5): 1157-1164. (in Chinese)

[18] Zhou Guozun, Tian Weijian, Chen Huifang. Three-dimensional superresolving phase optical pupil filter with polynomial function[J]. Acta Optica Sinica, 2011, 31(12): 1211002.

[19] Niziev V G, Nesterov A V. Influence of beam polarization on laser cutting efficiency[J]. Journal of Physics D: Applied Physics, 1999, 32(32): 1455-1461.

周国尊, 田维坚. 使用亚波长光栅器件产生圆柱型矢量光束[J]. 红外与激光工程, 2019, 48(3): 0302004. Zhou Guozun, Tian Weijian. Generation of cylindrical vector beams by using subwavelength grating polarizer[J]. Infrared and Laser Engineering, 2019, 48(3): 0302004.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!