光学学报, 2016, 36 (8): 0829001, 网络出版: 2016-08-18   

沙尘气溶胶粒子模型的线退偏比特性

Linear Depolarization Ratios Characteristics of Dust Aerosol Particles Model
作者单位
南京信息工程大学大气物理学院中国气象局气溶胶与云降水重点开放实验室, 江苏 南京 210044
摘要
利用离散偶极子近似法研究了旋转椭球体沙尘气溶胶粒子模型在尺度参数变化范围为0.1~23时(波长0.55 μm对应有效半径为0.01~2 μm)的线退偏比特性。通过分析比较不同轴半径比时线退偏比特性的差别,研究了粒子非球形性程度对单分散和多分散沙尘气溶胶粒子退偏比特性的影响。对单分散系,旋转椭球体沙尘气溶胶的线退偏比在瑞利散射区和米散射区随散射角的变化有不同的分布特征;在瑞利散射区,散射角分别为0°和180°的前后向散射方向,线退偏比较小,其值在1%的量级,而在散射角为90°附近的侧向,线退偏比有最大值,可达100%;在米散射区,线退偏比则无明显的极值分布,但有明显的后向增强;单分散沙尘粒子明显的非球形性特征,会增加在瑞利散射区的线退偏比,但却不会明显增加米散射区的线退偏比。而对多分散系,除了出现线退偏比最大值的侧向附近(80°~100°)之外,沙尘粒子非球形性特征越明显,其线退偏比越大。
Abstract
Linear depolarization ratios (LDR) characteristics of spheroid dust aerosol particles are studied based on discrete dipole approximation (DDA) for size parameters from 0.1 to 23 (corresponding to effective radius from 0.01 μm to 2 μm at wavelength of 0.55 μm). The effects of the particle asphericity degree on the LDRs characteristics for both monodisperse and polydisperse dust aerosols are performed by comparing LDRs characteristics at different spheroid aspect ratios. For monodisperse particles, the LDRs of spheroid dust aerosol have different behaviors as a function of scattering angle in the Rayleigh and Mie domains. In the Rayleigh domain, the LDRs are small with a value of 1%, in the forward- and backward-scattering directions with the scattering angles of 0° and 180°. While the LDRs show maxima of 100%, at side-scattering angles of 90°. In the Mie domain, the LDRs have no obvious extremum distribution, and reveal significantly enhanced backscattering values. The degree of asphericity of monodisperse dust particles generally increases their LDRs in the Rayleigh domain but not in the Mie domain. However, for polydisperse particles, the degree of dust asphericity increases with the LDRs except in the side-scattering regions (80°~100°) where the LDRs reach maxima.
参考文献

[1] 饶瑞中. 激光大气传输湍流与热晕综合效应[J]. 红外与激光工程, 2006, 35(2): 130-134.

    Rao Ruizhong. Combined effect of turbulence and thermal blooming of laser propagation in atmosphere[J]. Infrared and Laser Engineering, 2006, 35(2): 130-134.

[2] 黄印博, 王英俭. 激光传输大气参量测量精度要求的数值分析[J]. 强激光与粒子束, 2006, 18(5): 720-724.

    Huang Yinbo, Wang Yingjian. Effect of the measurement errors of atmospheric parameters on the laser propagation effects[J]. High Power Laser and Particle Beams, 2006, 18(5): 720-724.

[3] Haywood J M, Shine K P. Multi-spectral calculations of the direct radiative forcing of tropospheric sulphate and soot aerosols using a column model[J]. Quarterly Journal of the Royal Meteorological Society, 1997, 123 (543): 1907-1930.

[4] Kaufman Y J, Koren I, Remer L A, et al. The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean[J]. Proc Natl Acad Sci U S A, 2005, 102 (32): 11207-11212.

[5] Tuch T, Brand P, Wichmann H E, et al. Variation of particle number and mass concentration in various size ranges of ambient aerosols in Eastern Germany[J]. Atmos Environ, 1997, 31(24): 4193-4197.

[6] Krieger U K, Braun C. Light-scattering intensity fluctuations in single aerosol particles during deliquescence[J]. J Quant Spectrosc Radiat Transfer, 2001, 70(4-6): 545-554.

[7] Brewer R, Belzer W. Assessment of metal concentrations in atmospheric particles from Burnaby Lake, British Columbia, Canada[J]. Atmos Environ. 2001, 35(30): 5223-5233.

[8] Winker D M, Hunt W H, McGill M J. Initial performance assessment of CALIOP[J]. Geophys Res Lett, 2007, 34(19): L19803.

[9] Stasio di S. Experiments on depolarized optical scattering to sense in situ the onset of early agglomeration between nano-size soot particles[J]. J Quant Spectrosc Radiat Transfer, 2002, 73(2-5): 423-432.

[10] Winker D M, Pelon J, Coakley Jr J A, et al. The CALIPSO mission: a global 3D view of aerosols and clouds[J]. Bull Am Meteorol Soc, 2010, 91(9): 1211-1229.

[11] Sun W, Liu Z, Videen G, et al. For the depolarization of linearly polarized light by smoke particles[J]. J Quant Spectrosc Radiat Transfer, 2013, 122: 233-237.

[12] Mishchenko M I, Liu L, Mackowski D W. T-matrix modeling of linear depolarization by morphologically complex soot and soot-containing aerosols[J]. J Quant Spectrosc Radiat Transfer, 2013, 123: 135-144.

[13] Dubovik O, Sinyuk A, Lapyonok T, et al. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust[J]. J Geophys Res, 2006, 111(D11): D11208.

[14] Draine B T, Flatau P J. Discrete-dipole approximation for scattering calculations[J]. J Opt Soc Am, 1994, 11(4): 1491-1499.

[15] Draine B T, Flatau P J. Discrete-dipole approximation for periodic targets: theory and tests[J]. J Opt Soc Am, 2008, 25(11): 2693-2703.

[16] Flatau P J, Draine B T. Fast near-field calculations in the discrete dipole approximation for regular rectilinear grids[J]. Optics Express, 2012, 20(2): 1247-1252.

[17] Draine B T, Flatau P J. User guide for the discrete dipole approximation code DDSCAT 7.2[EB/OL]. [2012-05-15]. http://arXiv.org/abs/1202.3424.

[18] Fenn R W, Clough S A, Gallery W O, et al. Optical and infrared properties of the atmosphere[M]//Jusr A S. Handbook of geophysics and the space environment. Springfield: Air Force Geophysics Laboratory, 1985.

[19] Mishchenko M I, Hovenier J W, Travis L D. Book review: light scattering by nonspherical particles: theory measurements, and applications[M]. London: Academic Press, 2000.

[20] 季承荔, 陶宗明, 胡顺星, 等. 三波长激光雷达探测合肥地区卷云特性[J]. 光学学报, 2014, 34(4): 0401001.

    Ji Chengli, Tao Zongming, Hu Shunxing, et al. Cirrus measurement using three-wavelength lidar in Hefei[J]. Acta Optica Sinica, 2014, 34(4): 0401001.

[21] 王治飞, 刘东, 成中涛, 等. 基于模式识别的激光雷达遥感灰霾组分识别模型[J]. 中国激光, 2014, 41(11): 1113001.

    Wang Zhifei, Liu Dong, Cheng Zhongtao, et al. Pattern recognition model for haze identification with atmospheric backscattering lidars[J]. Chinese J Lasers, 2014, 41(11): 1113001.

[22] 刘聪, 苏林, 张朝阳, 等. 星载激光雷达对气溶胶垂直分布的对比分析[J]. 中国激光, 2015, 42(4): 0413001.

    Liu Cong, Su Lin, Zhang Chaoyang, et al. Comparative analysis of vertical distribution of aerosols by using spaceborne lidar[J]. Chinese J Lasers, 2015, 42(4): 0413001.

张小林. 沙尘气溶胶粒子模型的线退偏比特性[J]. 光学学报, 2016, 36(8): 0829001. Zhang Xiaolin. Linear Depolarization Ratios Characteristics of Dust Aerosol Particles Model[J]. Acta Optica Sinica, 2016, 36(8): 0829001.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!