光谱学与光谱分析, 2013, 33 (12): 3212, 网络出版: 2014-01-09  

煤粉发热量近红外光谱检测的预处理方法研究

Research on Preprocessing Method of Near-Infrared Spectroscopy Detection of Coal Ash Calorific Value
作者单位
1 中北大学机械与动力工程学院, 山西 太原 030051
2 山西农业大学工程技术学院, 山西 太原 030801
摘要
煤炭的发热量是评价煤炭品质的重要指标。 首先对比分析了平滑处理、 微分处理、 多元散射校正(MSC)以及标准归一化(SNV)等光谱与处理方法在改善煤粉近红外漫反射光谱信噪比的效果, 然后利用偏最小二乘法(PLS)和主成分分析方法(PCR)分别对采用每种预处理方法处理后的光谱建立煤粉发热量模型, 发现采用5点平滑处理、 多元散射校正和标准归一化处理可使模型的性能有较明显的改观, 5点平滑效果最好, 相关系数、 校正标准差和预测标准差分别为: 0.989 9, 0.0004 9和0.0005 2, 采用25点平滑处理产生了过平滑现象, 导致模型的性能变坏, 采用微分预处理后的光谱建立的模型没有明显变化, 对模型的性能影响不大。
Abstract
The calorific value of coal ash is an important indicator to evaluate the coal quality. In the experiment, the effect of spectrum and processing methods such as smoothing, differential processing, multiplicative scatter correction (MSC) and standard normal variate (SNV) in improving the near-infrared diffuse reflection spectrum signal-noise ratio was analyzed first, then partial least squares (PLS) and principal component analysis (PCR) were used to establish the calorific value model of coal ash for the spectrums processed with each preprocessing method respectively. It was found that the model performance can be obviously improved with 5-point smoothing processing, MSC and SNV, in which 5-point smoothing processing has the best effect, the coefficient of association, correction standard deviation and forecast standard deviation are respectively 0.989 9, 0.000 49 and 0.000 52, and when 25-point smoothing processing is adopted, over-smoothing occurs, which worsens the model performance, while the model established with the spectrum after differential preprocessing has no obvious change and the influence on the model is not large.
参考文献

[1] YU Shi, LI Feng-tian(于实, 李丰田). Handbook of New Analysis Methods and Results for Coal Quality Determination of Examination and Computation(煤质检测分析新技术新方法与化验结果的审查实用手册). Beijing: Contemporary China Publishing House(北京: 当代中国出版社), 2005. 5.

[2] LEI Meng, LI Ming(雷萌, 李明). Journal of Chemical Industry and Engineering(化工学报), 2012, 63(12): 3991.

[3] ZHAO Kai, LEI Meng(赵凯, 雷萌). Industry and Mine Automation(工矿自动化), 2012, 9.

[4] Slobodan Sasic, Yukihiro Ozaki. Analytical Chemistry, 2001, 73(1): 1.

[5] LI Jun-hua, WU Wei, HE Yan, et al(李军华, 吴炜, 何艳, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2013, 33(1): 85.

[6] TAN Kun, YE Yuan-yuan, DU Pei-jun(谭琨, 叶元元, 杜培军). Acta Photonica Sinica(光子学报), 2013, 42(1): 69.

[7] GUO Min, QIN Xin, MA Miao(过敏, 秦昕, 马苗). Journal of the Chinese Cereals and Oils Association(中国粮油学报), 2012, 27(4): 123.

[8] LEI Meng, LI Ming, WU Nan, et al(雷萌, 李明, 吴楠, 等). Journal of China University of Mining & Technology(中国矿业大学学报), 2013, 42(2): 291.

[9] XIE Jun, PAN Tao, CHEN Jie-mei(谢军, 潘涛, 陈洁梅). Chinese Journal of Analytical Chemistry(分析化学), 2010, 38(3): 342.

[10] LIU Xian, HAN Lu-jia, YANG Zeng-ling, et al(刘贤, 韩鲁佳, 杨增玲, 等). Chinese Journal of Analytical Chemistry(分析化学), 2012, 40(4): 596.

[11] National Standard of the People’s Republic of China(中华人民共和国国家标准). GB/T212-2008, Proximate Analysis of Coal(煤的工业分析方法), 2008.

张林, 陆辉山, 闫宏伟, 高强, 王福杰, 宋海燕. 煤粉发热量近红外光谱检测的预处理方法研究[J]. 光谱学与光谱分析, 2013, 33(12): 3212. ZHANG Lin, LU Hui-shan, YAN Hong-wei, GAO Qiang, WANG Fu-jie, SONG Hai-yan. Research on Preprocessing Method of Near-Infrared Spectroscopy Detection of Coal Ash Calorific Value[J]. Spectroscopy and Spectral Analysis, 2013, 33(12): 3212.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!