中国激光, 2018, 45 (9): 0911002, 网络出版: 2018-09-08   

光腔衰荡光谱方法测量分子的高精密谱线参数 下载: 1446次特邀综述

Precise Parameters of Molecular Absorption Lines from Cavity Ring-Down Spectroscopy
谈艳 1,2,3王进 1,2陶雷刚 1,2孙羽 1,2刘安雯 1,2胡水明 1,2
作者单位
1 中国科学技术大学合肥微尺度物质科学国家研究中心, 安徽 合肥230026
2 中国科学技术大学能源材料化学协同创新中心, 安徽 合肥 230026
3 Harvard-Smithsonian Center for Astrophysics, Atomic and Molecular Physics Division, Cambridge, MA 02138, USA
引用该论文

谈艳, 王进, 陶雷刚, 孙羽, 刘安雯, 胡水明. 光腔衰荡光谱方法测量分子的高精密谱线参数[J]. 中国激光, 2018, 45(9): 0911002.

Tan Yan, Wang Jin, Tao Leigang, Sun Yu, Liu Anwen, Hu Shuiming. Precise Parameters of Molecular Absorption Lines from Cavity Ring-Down Spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(9): 0911002.

参考文献

[1] Gordon I E, Rothman L S, Hill C, et al. The HITRAN2016 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203: 3-69.

[2] Galatry L. Simultaneouseffect of Doppler and foreign gas broadening on spectral lines[J]. Physical Review, 1961, 122(4): 1218-1223.

[3] Rautian S G. Sobel'man I I. The effect of collisions on the doppler broadening of spectral lines[J]. Soviet Physics Uspekhi, 1967, 9(5): 701-716.

[4] Schreier F. Computational aspects of speed-dependent Voigt profiles[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 187: 44-53.

[5] Boone C D, Walker K A, Bernath P F. Speed-dependent Voigt profile for water vapor in infrared remote sensing applications[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 105(3): 525-532.

[6] Tennyson J, Bernath P F, Campargue A, et al. Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC technical report)[J]. Pure and Applied Chemistry, 2014, 86(12): 1931-1943.

[7] Tan Y, Wang J, Cheng C F, et al. Cavity ring-down spectroscopy of the electric quadrupole transitions of H2 in the 784-852 nm region[J]. Journal of Molecular Spectroscopy, 2014, 300(6): 60-64.

[8] Oyafuso F, Payne V H, Drouin B J, et al. High accuracy absorption coefficients for the Orbiting Carbon Observatory-2 (OCO-2) mission: validation of updated carbon dioxide cross-sections using atmospheric spectra[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203: 213-223.

[9] 魏合理, 邬承就, 龚知本. 1.315 μm波长附近实际大气高分辨率吸收光谱[J]. 强激光与粒子束, 2002, 14(1): 35-40.

    Wei H L, Wu C J, Gong Z B. High-resolution absorption spectra of real atmosphere at 1.315 μm[J]. High Power Laser and Particle Beams, 2002, 14(1): 35-40.

[10] 高光珍, 蔡廷栋. 1570 nm附近多模二极管激光吸收光谱CO浓度测量[J]. 光学学报, 2016, 36(5): 0530002.

    Gao G Z, Cai T D. CO concentration measurement using multi-mode laser diode absorption spectroscopy near 1570 nm[J]. Acta Optica Sinica, 2016, 36(5): 0530002.

[11] 郁敏捷, 刘铭晖, 董作人, 等. 基于傅里叶变换的差分吸收光谱法测量NH3和SO2浓度的实验研究[J]. 中国激光, 2015, 42(9): 0915001.

    Yu M J, Liu M H, Dong Z R, et al. Study on measuring concentration of ammonia and sulphur dioxide by differential optical absorption spectrometry based on fast Fourier transform[J]. Chinese Journal of Lasers, 2015, 42(9): 0915001.

[12] Orr B J, He Y B. Rapidly swept continuous-wave cavity-ringdown spectroscopy[J]. Chemical Physics Letters, 2011, 512(1/2/3): 1-20.

[13] O'Keefe A. Deacon D A G. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources[J]. Review of Scientific Instruments, 1988, 59(12): 2544-2551.

[14] RomaniniD, GambogiJ, Lehmann KK. Cavity ring-down spectroscopy with CW diode laser excitation[C]. Proceedings of 50th International Symposium on Molecular Spectroscopy, 1995.

[15] Romanini D, Kachanov A A, Sadeghi N, et al. CW cavity ring down spectroscopy[J]. Chemical Physics Letters, 1997, 264(3/4): 316-322.

[16] Romanini D, Kachanov A A, Stoeckel F. Diode laser cavity ring down spectroscopy[J]. Chemical Physics Letters, 1997, 270(5/6): 538-545.

[17] Schulz K J, Simpson W R. Frequency-matched cavity ring-down spectroscopy[J]. Chemical Physics Letters, 1998, 297(5/6): 523-529.

[18] Yi H M, Liu Q N, Gameson L, et al. High-accuracy 12C 16O2 line intensities in the 2 μm wavelength region measured by frequency-stabilized cavity ring-down spectroscopy [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 206: 367-377.

[19] Drouin B J, Benner D C, Brown L R, et al. Multispectrum analysis of the oxygen A-band[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 186: 118-138.

[20] Robichaud D J, Hodges J T, Lisak D, et al. High-precision pressure shifting measurement technique using frequency-stabilized cavity ring-down spectroscopy[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109(3): 435-444.

[21] Reed Z D, Hodges J T. Line shape parameters of helium-broadened 12C 16O transitions in the 3→0 overtone band near 1.57 μm [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203: 300-308.

[22] Ngo N H, Lin H, Hodges J T, et al. Spectral shapes of rovibrational lines of CO broadened by He, Ar, Kr and SF 6: a test case of the Hartmann-Tran profile[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203: 325-333.

[23] Long D A, Fleisher A J, Liu Q, et al. Ultra-sensitive cavity ring-down spectroscopy in the mid-infrared spectral region[J]. Optics Letters, 2016, 41(7): 1612-1615.

[24] Lin H, Reed Z D, Sironneau V T, et al. Cavity ring-down spectrometer for high-fidelity molecular absorption measurements[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 161: 11-20.

[25] Long D A, Wójtewicz S, Miller C E, et al. Frequency-agile, rapid scanning cavity ring-down spectroscopy (FARS-CRDS) measurements of the (30012)←(00001) near-infrared carbon dioxide band[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 161: 35-40.

[26] , et al. . Macroscopic cloud properties in the WRF NWP model: An assessment using sky camera and ceilometer data[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(19): 10297-10312.

[27] Robichaud D J, Hodges J T, Brown L R, et al. Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy[J]. Journal of Molecular Spectroscopy, 2008, 248(1): 1-13.

[28] Robichaud D J, Hodges J T, Masłowski P, et al. High-accuracy transition frequencies for the O2 A-band[J]. Journal of Molecular Spectroscopy, 2008, 251(1/2): 27-37.

[29] Mikhailenko S N, Mondelain D, Karlovets E V, et al. Comb-assisted cavity ring down spectroscopy of 17O enriched water between 6667 and 7443 cm -1[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 206: 163-171.

[30] Mondelain D, Mikhailenko S N, Karlovets E V, et al. Comb-assisted cavity ring down spectroscopy of 17O enriched water between 7443 and 7921 cm -1[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203: 206-212.

[31] Cermák P, Karlovets E V, Mondelain D, et al. High sensitivity CRDS of CO2 in the 1.74 μm transparency window. A validation test for the spectroscopic databases[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 207: 95-103.

[32] Mondelain D, Vasilchenko S, Cermák P, et al. The CO2 absorption spectrum in the 2.3 μm transparency window by high sensitivity CRDS: (II) self-absorption continuum[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 187: 38-43.

[33] Karlovets E V, Campargue A, Kassi S, et al. Analysis and theoretical modeling of 18O enriched carbon dioxide spectrum by CRDS near 1.35 μm: (II) 16O 13C 18O, 16O 13C 17O, 12C 18O2, 17O 12C 18O, 12C 17O2, 13C 18O2 and 17O 13C 18O [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 191: 75-87.

[34] Campargue A, Mikhailenko S N, Vasilchenko S, et al. The absorption spectrum of water vapor in the 2.2 μm transparency window: high sensitivity measurements and spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 189: 407-416.

[35] Nikitin A V, Chizhmakova I S, Rey M, et al. Analysis of the absorption spectrum of 12CH4 in the region 5855-6250 cm -1 of the 2ν 3 band [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203: 341-348.

[36] Lukashevskaya A A, Kassi S, Campargue A, et al. High sensitivity cavity ring down spectroscopy of the 2ν1+3ν2+ν3 band of NO2 near 1.57 μm[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 200: 17-24.

[37] Richard L, Vasilchenko S, Mondelain D, et al. Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 201: 171-179.

[38] Vasilchenko S, Konefal M, Mondelain D, et al. The CO2 absorption spectrum in the 2.3 μm transparency window by high sensitivity CRDS: (I) rovibrational lines[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 184: 233-240.

[39] Yang L, Lin H, Plimmer M D, et al. Lineshape test on overlapped transitions (R9F1, R9F2) of the 2v3 band of 12CH4 by frequency-stabilized cavity ring-down spectroscopy [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 210: 82-90.

[40] Wang J, Sun Y R, Tao L G, et al. Comb-locked cavity ring-down saturation spectroscopy[J]. Review of Scientific Instruments, 2017, 88(4): 043108.

[41] Wang J, Sun Y R, Tao L G, et al. Communication: molecular near-infrared transitions determined with sub-kHz accuracy[J]. The Journal of Chemical Physics, 2017, 147(9): 091103.

[42] Ma L S, Ye J, Dubé P, et al. Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD[J]. Journal of the Optical Society of America B, 1999, 16(12): 2255.

[43] Maric M. McFerran J J, Luiten A N. Frequency-comb spectroscopy of the D1 line in laser-cooled rubidium[J]. Physical Review A, 2008, 77(3): 032502.

[44] Ye J, Swartz S, Jungner P, et al. Hyperfine structure and absolute frequency of the Rb-87 5P(3/2) state[J]. Optics Letters, 1996, 21(16): 1280-1282.

[45] Reichert J, Hänsch T W, et al. . Absolute optical frequency measurement of the cesium D2 line[J]. Physical Review A, 2000, 62(3): 031801.

[46] Chung C-Y, Ogilvie J F, Lee Y-P. Detection of vibration-rotational band 5-0 of 12C 16O X 1Σ + with cavity ringdown absorption near 0.96 μm [J]. The Journal of Physical Chemistry A, 2005, 109(35): 7854-7858.

[47] Tan Y, Wang J, Zhao X Q, et al. Cavity ring-down spectroscopy of the fifth overtone of CO[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 187: 274-279.

[48] Li G, Gordon I E, Rothman L S, et al. Rovibrational line lists for nine isotopologues of the co molecule in the X1Σ + ground electronic state [J]. The Astrophysical Journal Supplement Series, 2015, 216(1): 15.

[49] Wolniewicz L, Simbotin I, Dalgarno A. Quadrupole transition probabilities for the excited rovibrational states of H2[J]. The Astrophysical Journal Supplement Series, 1998, 115(2): 293-313.

[50] Piszczatowski K, Łach G, Przybytek M, et al. Theoretical determination of the dissociation energy of molecular hydrogen[J]. Journal of Chemical Theory and Computation, 2009, 5(11): 3039-3048.

[51] Pachucki K, Komasa J. Leading order nonadiabatic corrections to rovibrational levels of H2, D2, and T2[J]. The Journal of Chemical Physics, 2015, 143(3): 034111.

[52] Pachucki K, Komasa J. Rovibrational levels of HD[J]. Physical Chemistry Chemical Physics, 2010, 12(32): 9188.

[53] Sprecher D, Liu J J, Jungen C, et al. Communication: the ionization and dissociation energies of HD[J]. The Journal of Chemical Physics, 2010, 133(11): 111102.

[54] Sprecher D, Jungen C, Ubachs W, et al. Towards measuring the ionisation and dissociation energies of molecular hydrogen with sub-MHz accuracy[J]. Faraday Discussions, 2011, 150: 51-70.

[55] Zhang Y P, Cheng C H, Kim J T, et al. Dissociation energies of molecular hydrogen and the hydrogen molecular ion[J]. Physical Review Letters, 2004, 92(20): 203003.

[56] Liu J J, Salumbides E J, Hollenstein U, et al. Determination of the ionization and dissociation energies of the hydrogen molecule[J]. The Journal of Chemical Physics, 2009, 130(17): 174306.

[57] Liu J J, Sprecher D, Jungen C, et al. Determination of the ionization and dissociation energies of the deuterium molecule (D2)[J]. The Journal of Chemical Physics, 2010, 132(15): 154301.

[58] Komasa J, Piszczatowski K, Łach G, et al. Quantum electrodynamics effects in rovibrational spectra of molecular hydrogen[J]. Journal of Chemical Theory and Computation, 2011, 7(10): 3105-3115.

[59] Salumbides E J, Dickenson G D, Ivanov T I, et al. QED effects in molecules: test on rotational quantum states of H2[J]. Physical Review Letters, 2011, 107(4): 043005.

[60] Reinhold E, Buning R, Hollenstein U, et al. Indication of a cosmological variation of the proton-electron mass ratio based on laboratory measurement and reanalysis of H2 spectra[J]. Physical Review Letters, 2006, 96(15): 151101.

[61] Campargue A, Kassi S, Pachucki K, et al. The absorption spectrum of H∶CRDS measurements of the (2-0) band, review of the literature data and accurate line list up to 35000 cm[J]. Physical Chemistry Chemical Physics, 2011, 14(2): 802-815.

[62] Robie D C, Hodges J T. Line positions and line strengths for the 3←0 electric quadrupole band of H2Σg+1[J]. The Journal of Chemical Physics, 2006, 124(2): 024307.

[63] Bragg S L, Smith W H, Brault J W. Line positions and strengths in theH2 quadrupole spectrum[J]. The Astrophysical Journal, 1982, 263: 999-1004.

[64] Shelkovnikov A, Butcher R J, Chardonnet C, et al. Stability of the proton-to-electron mass ratio[J]. Physical Review Letters, 2008, 100(15): 150801.

[65] Quack M, Stohner J, Willeke M. High-resolution spectroscopic studies and theory of parity violation in chiral molecules[J]. Annual Review of Physical Chemistry, 2008, 59: 741-769.

[66] Tokunaga S K, Stoeffler C, Auguste F, et al. Probing weak force-induced parity violation by high-resolution mid-infrared molecular spectroscopy[J]. Molecular Physics, 2013, 111(14/15): 2363-2373.

[67] Balling P, Fischer M, Kubina P, et al. Absolute frequency measurement of wavelength standard at 1542 nm: acetylene stabilized DFB laser[J]. Optics Express, 2005, 13(23): 9196-9201.

[68] Foreman S M, Marian A, Ye J, et al. Demonstration of a HeNe-CH4-based optical molecular clock[J]. Optics Letters, 2005, 30(5): 570-572.

[69] Okubo S, Nakayama H, Iwakuni K, et al. Absolute frequency list of the ν3-band transitions of methane at a relative uncertainty level of 10-11[J]. Optics Express, 2011, 19(24): 23878-23888.

[70] Gambetta A, Fasci E, Castrillo A, et al. Frequency metrology in the near-infrared spectrum of (H2O)-O-17 and (H2O)-O-18 molecules: testing a new inversion method for retrieval of energy levels[J]. New Journal of Physics, 2010, 12(10): 103006.

[71] Lisak D, Hodges J T. High-resolution cavity ring-down spectroscopy measurements of blended H2O transitions[J]. Applied Physics B, 2007, 88(2): 317-325.

[72] Hong F L, Onae A, Jiang J, et al. Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm[J]. Digest of the LEOS Summer Topical Meetings, 2005, 8030: 135-136.

[73] Balling P. Absolute frequency measurement of wavelength standard at 1542nm: acetylene stabilized DFB laser[J]. Optics Express, 2005, 13(23): 9196-9201.

[74] Edwards C S, Margolis H S, Barwood G P, et al. High-accuracy frequency atlas of (C2H2)-C-13 in the 1.5 μm region[J]. Applied Physics B, 2005, 80(8): 977-983.

[75] Madej A A, Bernard J E, Alcock A J, et al. Accurate absolute frequencies of the v1+v3 band of (C2H2)-C-13 determined using an infrared mode-locked Cr∶YAG laser frequency comb[J]. Journal of the Optical Society of America B, 2006, 23(4): 741.

[76] Gatti D, Gotti R, Gambetta A, et al. Comb-locked Lamb-dip spectrometer[J]. Scientific Reports, 2016, 6: 27183.

[77] Twagirayezu S, Cich M J, Sears T J, et al. Frequency-comb referenced spectroscopy of v4- and v5-excited hot bands in the 1.5 μm spectrum of C2H2[J]. Journal of Molecular Spectroscopy, 2015, 316: 64-71.

[78] Madej A A, Alcock A J, Czajkowski A, et al. Accurate absolute reference frequencies from 1511 to 1545 nm of the ν1+ν3 band of 12C2H2 determined with laser frequency comb interval measurements [J]. Journal of the Optical Society of America B, 2006, 23(10): 2200-2208.

[79] Edwards C S, Barwood G P, Margolis H S, et al. High-precision frequency measurements of the ν1+ν3 combination band of 12C2H2 in the 1.5 μm region [J]. Journal of Molecular Spectroscopy, 2005, 234(1): 143-148.

[80] Santamaria L, Sarno V D, Natale P D, et al. Comb-assisted cavity ring-down spectroscopy of a buffer-gas-cooled molecular beam[J]. Physical Chemistry Chemical Physics, 2016, 18(25): 16715-16720.

[81] Czajkowski A, Alcock A J, Bernard J E, et al. Studies of saturated absorption and measurements of optical frequency for lines in the ν1+ν3 and ν1+2ν4 bands of ammonia at 1.5 μm[J]. Optics Express, 2009, 17(11): 9258-9269.

[82] Burkart J, Sala T, Romanini D, et al. Communication: saturated CO2 absorption near 1.6 μm for kilohertz-accuracy transition frequencies[J]. The Journal of Chemical Physics, 2015, 142(19): 191103.

[83] Amy-Klein A, Vigué H, Chardonnet C. Absolute frequency measurement of 12C 16O2 laser lines with a femtosecond laser comb and new determination of the 12C 16O2 molecular constants and frequency grid [J]. Journal of Molecular Spectroscopy, 2004, 228(1): 206-212.

[84] Giusfredi G, Bartalini S, Borri S, et al. Saturated-absorption cavity ring-down spectroscopy[J]. Physical Review Letters, 2010, 104(11): 110801.

[85] Ting W J, Chang C H, Chen S E, et al. Precision frequency measurement of N2O transitions near 45 μm and above 150 μm[J]. Journal of the Optical Society of America B, 2014, 31(8): 1954-1963.

[86] Bielsa F, Djerroud K, Goncharov A, et al. HCOOH high-resolution spectroscopy in the 9.18 μm region[J]. Journal of Molecular Spectroscopy, 2008, 247(1): 41-46.

[87] Rothman L S, Gordon I E, Babikov Y, et al. The HITRAN2012 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130: 4-50.

[88] Swann W C, Gilbert S L. Pressure-induced shift and broadening of 1560-1630 nm carbon monoxide wavelength-calibration lines[J]. Journal of the Optical Society of America B, 2002, 19(10): 2461-2467.

[89] Bordé C J, Hall J L, Kunasz C V, et al. Saturated absorption line shape: calculation of the transit-time broadening by a perturbation approach[J]. Physical Review A, 1976, 14(1): 236-263.

[90] Picqué N, Guelachvili G. Absolute wavenumbers and self-induced pressure lineshift coefficients for the 3-0 vibration-rotation band of 12C 16O [J]. Journal of Molecular Spectroscopy, 1997, 185(2): 244-248.

[91] Mondelain D, Sala T, Kassi S, et al. Broadband and highly sensitive comb-assisted cavity ring down spectroscopy of CO near 1.57 μm with sub-MHz frequency accuracy[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 154: 35-43.

谈艳, 王进, 陶雷刚, 孙羽, 刘安雯, 胡水明. 光腔衰荡光谱方法测量分子的高精密谱线参数[J]. 中国激光, 2018, 45(9): 0911002. Tan Yan, Wang Jin, Tao Leigang, Sun Yu, Liu Anwen, Hu Shuiming. Precise Parameters of Molecular Absorption Lines from Cavity Ring-Down Spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(9): 0911002.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!