光学 精密工程, 2018, 26 (10): 2493, 网络出版: 2018-12-26  

应用于空间大型光机结构中的黏滞液体阻尼器

Viscous damper for use in large optomechanical structures
作者单位
1 中国科学院 长春光学精密机械与物理研究所 空间机器人工程中心空间机器人系统创新研究室,吉林 长春 130033
2 中国科学院大学,北京 100049
摘要
针对大型光机结构的结构特性,为抑制宽频噪声对结构指向稳定度及精度的影响,设计了一种可以在全频段提供高阻尼低轴向刚度的液体阻尼器。首先,对液体阻尼器的参数设计理论进行了分析; 其次,通过微振动一体化集成仿真分析了引入液体阻尼器对整机的影响,由分析结果可知,在内外框架之间安装阻尼器,可以达到抑制宽频噪声的目的,一般情况下光轴指向精度(Line of Sight)可以改善50%以上,同时对结构特性改变较小; 最后,设计了测试系统,对阻尼器参数的特性进行了实验研究,可知该液体阻尼器的阻尼系数随频率升高降低,在低频时可以达到18 574 N·s/m, 300 Hz时阻尼系数在300 N·s/m以上,轴向刚度约为28 659 N/m,随频率变化基本保持不变。结果表明: 试验测试结果与仿真结果相符,液体阻尼器的刚度及阻尼参数的设计都达到了技术要求,根据仿真与试验的分析验证了阻尼器对大型光机结构振动抑制的有效性。
Abstract
Considering large optomechanical structures, a fluid damper was designed with high damping and low axial stiffness in the full frequency range to reduce the width of frequency noise. Firstly, the theory of parameter design for a liquid damper was reviewed. Secondly, the characteristics of the fluid damper were verified using the finite element method, in addition to its influence on the entire structure. The simulation results indicated that the use of a liquid damper could effectively increase the structural damping of a spacecraft without affecting its mechanical characteristics. Moreover, it was shown that the line of sight of an optomechanical structure can be improved by more than 50% generally. The test system used to study the characteristics of the design parameters of the dampers was designed as part of this investigation. It was determined that the damping of the liquid damper decreased with an increase in frequency. A coefficient of more than 300 N·s/m was obtained at 300 Hz, while the change of the stiffness with frequency remained approximately the same. These results indicate that the experimental data are consistent with the simulation results, and the design of the stiffness and damping properties of liquid dampers satisfied the requirements. In summary, the effectiveness of liquid dampers on vibration suppression of large optomechanical structures was verified based on simulation and test results.
参考文献

[1] ADDARIN D,AGLIETTI G S,REMEDIA M. Experimental and numerical investigation of coupled microvibration dynamics for satellite reaction wheels[J]. Journal of Sound and Vibration, 2017,386: 225-241.

[2] 韩春杨, 徐振邦, 吴清文,等. 大型光学载荷次镜调整机构优化设计及误差分配[J]. 光学 精密工程, 2016, 24(5): 1093-1103.

    HAN CH Y, XU ZH B, WU Q W, et al.. Optimization design and error distribution for secondary mirror adjusting mechanism of large optical payload[J]. Opt. Precision Eng., 2016, 24(5): 1093-1103. (in Chinese)

[3] LI L, TAN L Y, KONG L, et al.. The influence of flywheel micro vibration on space camera and vibration suppression[J]. Mechanical Systems and Signal Processing, 2018, 100: 360-370.

[4] KIM D K. Micro-vibration model and parameter estimation method of a reaction wheel assembly[J]. Journal of Sound and Vibration, 2014,333(18): 4214-4231.

[5] WANG Z Y,ZOU Y J, JIAO A C, et al.. The jitter measurement and analysis for a remote sensing satellite platform[J]. Spacecraft Environ Eng, 3 (32) (2015): 278–285.

[6] MASTERSON R A,MILLER D W, GROGAN R L. Development and validation of reaction wheel disturbance models: empirical model[J]. Journal of Sound and Vibration, 2002,249 (3): 575-598.

[7] DAVIS L P, CUNNINGHAM D, BICOS A S, et al.. Adaptable passive viscous damper: an adaptable D-StrutTM[A]. 1994 North American Conference on Smart Structures and Materials[C]. International Society for Optics and Photonics, 1994: 47-58.

[8] DAVIS P, CUNNINGHAM D, HARRELL J. Advanced 1.5 Hz passive viscous isolation system[A]. 35th AIAA SDM Conference[C]. Hilton Head, South Carolina, 1994: 1-11.

[9] 刘兴天,孔祥森,申军烽,等. 卫星遥感器微振动隔离用液体阻尼隔振器[J]. 光学 精密工程, 2017, 25(9): 2448-2453.

    LIU X T, KONG X S, SHEN J F, et al.. Vibration isolator with relaxation type damping for micro-vibration isolation from satellite remote sensors[J]. Opt. Precision Eng., 2017, 25(9): 2448-2453. (in Chinese)

[10] 王杰, 赵寿根, 吴大方, 等. 一种基于黏性流体介质的微振动隔振器机理研究[J]. 振动工程学报, 2015, 2(4): 237-347.

    WANG J, ZHAO SH G, WU D F, et al.. The mechanism study of a micro-vibration isolator based on viscous fluid[J]. Journal of Vibration Engineering, 2015, 2(4): 237-347. (in Chinese)

[11] 张尧, 徐世杰. 星上光学有效载荷的两级隔振研究[J]. 航空学报, 2012, 33(9): 1634-1654.

    ZHANG Y, XU SH J. Dual-stage passive vibration isolation system of optical payloads for high resolution remote sensing satellite[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1643-1654. (in Chinese)

[12] VAILLON L, PHILIPPE C. Passive and active microvibration control for very high pointing accuracy space system[J]. Smart Materials and Structures, 1999,8(6): 719-728.

[13] BOYD J, HYDE T T, OSTERBERG D, et al.. Performance of a launch and on-orbit isolator[C]. SPIE’s 8th Annual International Symposium on Smart Structures and Materials. International Society for Optics and Photonics, 2001: 433-440.

[14] ZHANG Y, XU S J. Vibration isolation platform for control moment gyroscopes on satellites[J]. Journal of Aerospace engineering, 2012, 25(4): 641-652.

[15] SULLIVAN J M, GOODING J C, IDLE M K, et al.. Performance testing for an active/passive vibration isolation and steering system[R]. AIAA-1996-1210-CP. Reston: AIAA, 1996.

[16] 李林, 王栋, 徐婧, 等. 飞轮组件微振动对高分辨率光学卫星光轴的影响[J]. 光学 精密工程, 2016, 24(10): 2515-2522.

    LI L, WANG D, XU J, et al.. Influence of micro-vibration of flywheel components on optical axis of high resolution optical satellite[J]. Opt. Precision Eng., 2016, 24(10): 2515-2522. (in Chinese)

[17] 陈涛. 空间用粘滞液体阻尼隔振器研究[D]. 中国科学院大学, 2016.

    CHEN T. Research of Viscous Fluid Damping Isolator Used in Space[D]. Beijing: Graduate University of the Chinese Academy of Sciences, 2016. (in Chinese)

[18] OH H U, IZAWA K, TANIWAKI. Development of variable-damping isolator using bio-metal fiber for reaction wheel vibration isolation[J]. Smart materials and Structures, 2005, 14(5): 928-933.

[19] 王杰, 赵寿根, 吴大方, 等. 微振动隔振器动态系数的测试方法[J]. 航空学报, 2014,35(2): 454-460.

    WANG J, ZHAO SH G, WU D F, et al.. A Test Method of Dynamic Damping Coefficient of Micro-vibration Isolators[J]. Acta Aeronautica et Astronautica Sinica. 2014,35(2): 454-460. (in Chinese)

夏明一, 秦超, 申军立, 吴清文, 徐振邦. 应用于空间大型光机结构中的黏滞液体阻尼器[J]. 光学 精密工程, 2018, 26(10): 2493. XIA Ming-yi, QIN Chao, SHEN Jun-li, WU Qing-wen, XU Zhen-bang. Viscous damper for use in large optomechanical structures[J]. Optics and Precision Engineering, 2018, 26(10): 2493.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!