激光与光电子学进展, 2015, 52 (9): 090101, 网络出版: 2015-08-28   

大气湍流中部分相干径向偏振光束的光斑及偏振度研究

Research on Beam and Degree of Polarization of Partially Coherent Radially Polarized Beam in Turbulent Atmosphere
作者单位
华侨大学信息科学与工程学院&福建省光传输与变换重点实验室, 福建 厦门 361021
摘要
基于广义惠更斯理论及相干偏振统一理论,研究部分相干径向偏振光束在大气湍流中传输时,光源波长对光强分布,相干性、湍流强度、光斑尺寸及光源波长对偏振度(DOP)分布的影响。理论推导与数值模拟发现:部分相干径向偏振光束在大气湍流中传输时,光强分布受光源波长的影响明显,随着传输距离的增大,光强逐渐由空心分布演化为实心分布。光强完成这一演化所需的传输距离与光源波长有关,光源波长的减小,会造成光强由空心分布演化为实心分布所需的传输距离增大。另一方面,光束DOP 分布也与相干性、大气湍流强度、光斑尺寸及光源波长相关,在确定的传输距离处,光源相干性越高、大气湍流越弱、光斑尺寸越大及光源波长越短,DOP 随半径变化的曲线斜率也越大。随着光束传输距离的增加,这种趋势会逐渐突现。
Abstract
Based on the theory of generalized Huygens theory and the unified theory of coherence and polarization, distribution of the intensity of partially coherent radially polarized beams influenced by source wavelength, and degree of polarization (DOP) influenced by coherence, atmosphere turbulence intensity, spot size and source wavelength, are investigated while propagating in turbulent atmosphere. It is shown that while the partially coherent radially polarized beams propagate in turbulent atmosphere, the distribution of intensity is affected by source wavelength obviously. With the increase of propagation distance, the doughnut beam spot of the partially coherent radially polarized beam becomes a solid beam, which is related to source wavelength. The shorter the source wavelength is, the longer distance the partially coherent radially polarized beam propagates to form a solid beam shape. In addition, distribution of DOP is also affected by coherence, atmosphere turbulence intensity, spot size and source wavelength. At a certain propagation distance, the rate of DOP with radius increases with the larger original coherence, the weaker atmosphere turbulence intensity, the bigger spot size and the shorter source wavelength. Such tendency becomes more obvious with longer propagation distance.
参考文献

[1] Cai Y, He S. Propagation of a partially coherent twisted anisotropic Gaussian-Schell model beam in a turbulent atmosphere[J]. Appl Phys Lett, 2006, 89(4): 041117.

[2] Ji X L, Zhang E T, Lü B D. Changes in the spectrum of Gaussian-Schell model beams propagating through turbulent atmosphere[J]. Opt Commun, 2006, 259(1): 1-6.

[3] Cai Y. Propagation of various flat-topped beams in a turbulent atmosphere[J]. J Opt A: Pure Appl Opt, 2006, 8(6): 537-545.

[4] Cai Y, He S. Propagation of various dark hollow beams in a turbulent atmosphere[J]. Opt Express, 2006, 14(4): 1353-1367.

[5] Du X, Zhao D, Korotkova O. Changes in the statistical properties of stochastic anisotropic electromagnetic beams on propagation in the turbulent atmosphere[J]. Opt express, 2007, 15(25): 16909-16915.

[6] 田博, 蒲继雄. 部分相干径向偏振光束对两种粒子的捕获[J]. 中国激光, 2011, 38(s1): s102006.

    Tian Bo, Pu Jixiong. Trapping two types of particles using a partially coherent polarized doughnut beam[J]. Chinese J Lasers, 2011, 38(s1): s102006.

[7] Guo Lina, Tang Zhilie, Liang Chongqing, et al.. Characterization of tightly focused partially coherent radially polarized vortex beams[J]. Chin Opt Lett, 2010, 8(5): 520-523.

[8] Li J, Yang A, Lü B. Comparative study of the beam-width spreading of partially coherent Hermite-Sinh-Gaussian beams in atmospheric turbulence[J]. J Opt Soc Am A, 2008, 25(11): 2670-2679.

[9] Yang A, Zhang E, Ji X, et al.. Angular spread of partially coherent Hermite-Cosh-Gaussian beams propagating through atmospheric turbulence[J]. Opt express, 2008, 16(12): 8366-8380.

[10] Kashani F D, Alavinejad M, Ghafary B. Polarization characteristics of aberrated artially coherent flat-topped beam propagating through turbulent stmosphere[J]. Opt Commun, 2009, 282(20): 4029-4034.

[11] Mushiake Y, Matsumura K, Nakajima H. Generation of radially polarized optical beam mode by laser oscillation[J]. Pro IEEE, 1972, 60(9): 1107-1109.

[12] Niziev V G, Nesterov A V. Influence of beam polarization on laser cutting efficiency[J]. Phys D: Appl Phys, 1999, 32(13): 1455-1461.

[13] Kimura W D, Kim G H, Romea R D, et al.. Laser acceleration of relativistic electrons using the inverse Cherenkov effect [J]. Phys Rev Lett, 1995, 74(4): 546-549.

[14] Novotny L, Beversluis M R, Youngworth K S, et al.. Longitudinal field modes probed by single molecules[J]. Phys Rev Lett, 2001, 86(23): 5251-5254.

[15] Dom R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J]. Phys Rev Lett, 2003, 91(23): 233901.

[16] Born M, Wolf E. Principles of Optics[M]. 7th ed, UK: Cambridge University Press, 1999: 474-478, 514-525, 583-587.

[17] Korotkova O, Salem M, Wolf E. Beam conditions for radiation generated by an electromagnetic Gaussian-Schell model source[J]. Opt Lett, 2004, 29(11): 1173-1175.

[18] Salem M, Korotkova O, Dogariu A. Polarization changes in partially coherent electromagnetic beams propagating through turbulent atmosphere[J]. Waves in Random Media, 2004, 14(4): 513-523.

[19] Wang S C H, Plonus M A. Optical beam propagation for a partially coherent source in the turbulent atmosphere[J]. J Opt Soc Am, 1979, 69(9): 1297-1304.

[20] Wu J. Propagation of a Gaussian-Schell beam through turbulent media[J]. J Mod Opt, 1990, 37(4): 671-684.

[21] Wolf E. Unified theory of coherence and polarization of random electromagnetic beams[J]. Phys Lett A, 2003, 312(5): 263-267.

[22] 王贺. 径向偏振部分相干光束的传输[D]. 哈尔滨: 哈尔滨工业大学, 2012: 30-35.

    Wang He. The Propagation Properties of Radially Polarized Partially Coherent Beams[D]. Harbin: Harbin Institute of Technology, 2012: 30-35.

陈顺意, 丁攀峰, 蒲继雄. 大气湍流中部分相干径向偏振光束的光斑及偏振度研究[J]. 激光与光电子学进展, 2015, 52(9): 090101. Chen Shunyi, Ding Panfeng, Pu Jixiong. Research on Beam and Degree of Polarization of Partially Coherent Radially Polarized Beam in Turbulent Atmosphere[J]. Laser & Optoelectronics Progress, 2015, 52(9): 090101.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!