Frontiers of Optoelectronics, 2013, 6 (4): 458, 网络出版: 2014-03-03  

Condensed state fluorescence switching of hexaarylbiimidazole-tetraphenylethene conjugate for super-resolution fluorescence nanolocalization

Condensed state fluorescence switching of hexaarylbiimidazole-tetraphenylethene conjugate for super-resolution fluorescence nanolocalization
作者单位
School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
摘要
Abstract
This paper reported the synthesis of hexaarylbiimidazole-tetraphenylethene (HABI-TPE) conjugated photochromic fluorophore, which simultaneously exhibited photochromic property, condensed state enhanced emission and reversible fluorescence switching. Upon UV irradiation, a green species with a broad absorption band between 550 and 800 nm ( the absorption maximum at 697 nm ) was observed, which readily faded to colorless in the darkness. HABI-TPE launched strong fluorescence with the maximum emission wavelength at 520-580 nm under the excitation with 450-500 nm visible light in condensed state, which is in contrast to nonfluorescence in solution. The maximum emission wavelength in condensed state was dependent of excitation wavelength. More interestingly, HABI-TPE exhibited reversible fluorescence switching upon alternating irradiation with blue or near-UV light (wavelength less than 490 nm) and green light (more than 490 nm) in condensed state. Our evaluation demonstrated that HABI-TPE exhibited great photoswitchable fluorescence, which is a promising photoswitchable fluorophore for localization-based super-resolution microscopy, evidencing by resolving nanostructures with sub-100 nm resolution in polymethylmethacrylate films.
参考文献

[1] Duerr H, Bouas-Laurent H. Photochromism: Molecules and Systems. Amsterdam: Elsevier, 2003

[2] Hayashi T, Maeda K. Preparation of a new phototropic substance. Bulletin of the Chemical Society of Japan, 1960, 33(4): 565-566

[3] White D M, Sonnenberg J. Oxidation of triarylimidazoles. Structures of the photochromic and piezochromic dimers of triarylimidazyl radicals. Journal of the American Chemical Society, 1966, 88(16): 3825-3829

[4] Kawano M, Sano T, Abe J, Ohashi Y. The first in situ direct observation of the light-induced radical pair from a hexaarylbiimidazolyl derivative by X-ray crystallography. Journal of the American Chemical Society, 1999, 121(35): 8106-8107

[5] Abe J, Sano T, Kawano M, Ohashi Y, Matsushita M M, Iyoda T. EPR and density functional studies of light-induced radical pairs in a single crystal of a hexaarylbiimidazolyl derivative. Angewandte Chemie International Edition, 2001, 40(3): 580-582

[6] Iwahori F, Hatano S, Abe J. Rational design of a new class of diffusion-inhibited HABI with fast back-reaction. Journal of Physical Organic Chemistry, 2007, 20(11): 857-863

[7] Fujita K, Hatano S, Kato D, Abe J. Photochromism of a radical diffusion-inhibited hexaarylbiimidazole derivative with intense coloration and fast decoloration performance. Organic Letters, 2008, 10(14): 3105-3108

[8] Kimoto A, Tokita A, Horino T, Oshima T, Abe J. Fast photochromic polymers carrying [2.2] paracyclophane-bridged imidazole dimer. Macromolecules, 2010, 43(8): 3764-3769

[9] Kishimoto Y, Abe J. A fast photochromic molecule that colors only under UV light. Journal of the American Chemical Society, 2009, 131(12): 4227-4229

[10] Harada Y, Hatano S, Kimoto A, Abe J. Remarkable acceleration for back-reaction of a fast photochromic molecule. The Journal of Physical Chemistry Letters, 2010, 1(7): 1112-1115

[11] Miyasaka H, Satoh Y, Ishibashi Y, Ito S, Nagasawa Y, Taniguchi S, Chosrowjan H, Mataga N, Kato D, Kikuchi A, Abe J. Ultrafast photodissociation dynamics of a hexaarylbiimidazole derivative with pyrenyl groups: dispersive reaction from femtosecond to 10 ns time regions. Journal of the American Chemical Society, 2009, 131(21): 7256-7263

[12] Luo J D, Xie Z L, Lam J W Y, Cheng L, Chen H Y, Qiu C F, Kwok H S, Zhan X W, Liu Y Q, Zhu D B, Tang B Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chemical Communications (Cambridge), 2001, (18): 1740-1741

[13] Hong Y, Lam J W Y, Tang B Z. Aggregation-induced emission. Chemical Society Reviews, 2011, 40(11): 5361-5388

[14] Hong Y N, Lam J W Y, Tang B Z. Aggregation-induced emission: phenomenon, mechanism and applications. Chemical Communications, 2009, (29): 4332-4353

[15] Aldred M P, Li C, Zhang G F, GongWL, Li A D Q, Dai Y F, Ma D G, Zhu M Q. Fluorescence quenching and enhancement of vitrifiable oligofluorenes end-capped with tetraphenylethene. Journal of Materials Chemistry, 2012, 22(15): 7515-7528

[16] Zhang G F, Aldred M P, Gong W L, Li C, Zhu M Q. Utilising tetraphenylethene as a dual activator for intramolecular charge transfer and aggregation induced emission. Chemical Communications (Cambridge), 2012, 48(62): 7711-7713

[17] ZhuMQ, Zhang G F, Li C, AldredMP, Chang E, Drezek R A, Li A D Q. Reversible two-photon photoswitching and two-photon imaging of immunofunctionalized nanoparticles targeted to cancer cells. Journal of the American Chemical Society, 2011, 133(2): 365-372

[18] Zhu M Q, Zhang G F, Li C, Li Y J, Aldred M P, Li A D Q. Photoswitchable nanofluorophores for innovative bioimaging. Journal of Innovative Optical Health Sciences, 2011, 4(4): 395-408

[19] Zhu M Q, Zhu L, Han J J, Wu W W, Hurst J K, Li A D Q. Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence. Journal of the American Chemical Society, 2006, 128(13): 4303-4309

[20] Hu D H, Tian Z Y, Wu W W, Wan W, Li A D Q. Photoswitchable nanoparticles enable high-resolution cell imaging: PULSAR microscopy. Journal of the American Chemical Society, 2008, 130(46): 15279-15281

[21] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods, 2006, 3(10): 793-796

[22] Huang B, Wang W Q, Bates M, Zhuang X W. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science, 2008, 319(5864): 810-813

[23] Bates M, Huang B, Dempsey G T, Zhuang X W. Multicolor superresolution imaging with photo-switchable fluorescent probes. Science, 2007, 317(5845): 1749-1753

[24] Bates M, Huang B, Zhuang X W. Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Current Opinion in Chemical Biology, 2008, 12(5): 505-514

[25] Lord S J, Conley N R, Lee H L D, Samuel R, Liu N, Twieg R J, Moerner W E. A photoactivatable push-pull fluorophore for singlemolecule imaging in live cells. Journal of the American Chemical Society, 2008, 130(29): 9204-9205

[26] Dempsey G T, Bates M, Kowtoniuk W E, Liu D R, Tsien R Y, Zhuang X W. Photoswitching mechanism of cyanine dyes. Journal of the American Chemical Society, 2009, 131(51): 18192-18193

Wen-Liang GONG, Zhe HU, Chong LI, Guo-Feng ZHANG, Tao CHEN, Matthew P. ALDRED, Zhen-Li HUANG, Ming-Qiang ZHU. Condensed state fluorescence switching of hexaarylbiimidazole-tetraphenylethene conjugate for super-resolution fluorescence nanolocalization[J]. Frontiers of Optoelectronics, 2013, 6(4): 458. Wen-Liang GONG, Zhe HU, Chong LI, Guo-Feng ZHANG, Tao CHEN, Matthew. P. ALDRED, Zhen-Li HUANG, Ming-Qiang ZHU. Condensed state fluorescence switching of hexaarylbiimidazole-tetraphenylethene conjugate for super-resolution fluorescence nanolocalization[J]. Frontiers of Optoelectronics, 2013, 6(4): 458.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!