光学 精密工程, 2018, 26 (5): 1028, 网络出版: 2018-08-14  

长波红外相机在轨扫描成像畸变消除控制策略

Control strategy for distortion elimination of long-wave infrared camera on-orbit scanning imaging
刘小勇 1,2,*张宗存 1,2曹开钦 1孙德新 1,2,3刘银年 1,2,3
作者单位
1 中国科学院 上海技术物理研究所 中国科学院红外探测与成像技术重点实验室, 上海 200083
2 中国科学院大学, 北京 100049
3 中国科学院 上海技术物理研究所 启东光电遥感中心, 江苏 南通 226200
摘要
为消除长波红外相机在轨扫描成像的地面畸变, 研究了变焦扫描成像畸变消除系统控制技术。针对变焦扫描控制的多电机位置同步要求, 提出一种高精度多电机位置同步算法。依据设计的变焦扫描成像控制原理, 设定每个扫描时刻点变倍组电机和补偿组电机的同步位置。变焦控制系统实现与扫描控制系统的同步计时, 根据当前位置和下一时刻的同步位置, 每隔0.01 s计算出电机的运行速度, 实时对电机的速度进行控制。实验结果表明, 变倍组和补偿组电机的位置同步偏差分别在±0.003 mm、±0.002 mm以内; 沿轨方向地面分辨率的最大偏差不超过±0.047 m。长波红外相机在连续变焦扫描控制过程中成像清晰, 达到消除畸变的效果, 满足变焦扫描成像的要求。
Abstract
The control technology of a distortion control system for zoom scanning imaging was investigated to eliminate ground distortion of a long wave infrared camera on-orbit scanning imaging. A high-precision multi motor position synchronization algorithm was proposed taking the multi motor position synchronization of zoom scanning control into consideration. The synchronous positions of the zoom group motor and the compensating group motor at each point of the scanning time were set according to the design principle of zoom scanning imaging control. In particular, the zoom control system was designed to realize synchronous timing with the scanning control system, calculate the running velocity of the motor every 0.01 s according to the current position and the next moment synchronous position, and control the velocity of the motor in real time. The experimental results show that the position synchronization errors of the zoom group motor and the compensating group motor are within ±0.003 mm and ±0.002 mm, respectively, and the maximum ground sample resolution deviation in the track direction is within ±0.047 m. The images obtained from the long wave infrared camera in the process of continuous zoom scanning control are quite clear, and the distortion has been significantly eliminated, thus realizing zoom scanning imaging.
参考文献

[1] 刘银年. 45°镜多元探测器并扫成像特性和扫描轨迹分析 [J]. 光学 精密工程, 2002, 10(1): 110-115.

    LIU Y N. Analysis of the imaging characteristics and scanning traces of the 45° rotating scanning mirror [J]. Opt. Precision Eng., 2002, 10(1): 110-115. (in Chinese)

[2] 吕娴娜. 高分辨率宽幅红外相机扫描控制技术研究 [D]. 北京: 中国科学院, 2012.

    L X N. Research of Scanning Control Technology in High Resolution and Wide Swath Infrared Camera [D]. Beijing: Graduate University of the Chinese Academy of Sciences, 2012. (in Chinese)

[3] 周世椿. 高级红外光电工程导论 [M]. 北京: 科学出版社, 2014: 110-112.

    ZHOU SH CH. Introduction to Advanced Infrared Opto Electronics Engineering [M]. Beijing: Science Press, 2014: 110-112. (in Chinese)

[4] 李振, 黄海军. Matlab环境下去除MODIS L1B数据的“蝴蝶结”效应 [J]. 海洋科学集刊, 2010, (50): 50-56.

    LI ZH, HUANG H J. Using Matlab to remove the bowtie effect of MODIS L1B data [J]. Studia Marina Sinica, 2010, (50): 50-56. (in Chinese)

[5] 宋莎莎, 张杰, 孟俊敏. 基于网函数插值的MODIS Level 1B图像Bowtie效应修正 [J]. 遥感技术与应用, 2010, 25(4): 552-559.

    SONG SH SH, ZHANG J, MENG J M. Bowtie effect correction based on net function interpolation in MODIS level 1B images [J]. Remote Sensing Technology and Application, 2010, 25(4): 552-559. (in Chinese)

[6] 王汉禹, 郭浩, 安居白, 等. MODIS数据Bowtie效应消除算法 [J]. 计算机工程, 2014, 40(6): 234-237.

    WANG H Y, GUO H, AN J B, et al.. Algorithm of bowtie effect removing for MODIS data [J]. Computer Engineering, 2014, 40(6): 234-237. (in Chinese)

[7] 贾益, 王盛, 江万寿. 中低分辨率卫星影像Bowtie效应的快速去除 [J]. 国土资源遥感, 2016, 28(4): 83-87.

    JIA Y, WANG SH, JIANG W SH. Algorithm of Bowtie effect rapid removing for low and medium resolution satellite images [J]. Remote Sensing for Land & Resource, 2016, 28(4): 83-87. (in Chinese)

[8] 钱海明, 王春林, 孙金彦. MODIS影像的几何处理算法研究 [C]. 第十九届华东六省一市测绘学会学术交流会暨2017年海峡两岸测绘技术交流与学术研讨会论文集, 山东省测绘地理信息学会, 2017: 5.

    QIAN H M, WANG CH L, SUN J Y. A study of algorithm of geometric processing for MODIS image [C]. Shandong Provincial Society for Surveying, Mapping and Geoinformation, Shandong Institute of Surveying and Mapping Geographic Information, 2017: 5. (in Chinese)

[9] NOAA. Visible infrared imaging radiometer suite (VIIRS): Imagery environmental data record (EDR) Users guide [R]. Washington, D.C.: U.S. Department of Commerce National Oceanic and Atmospheric Administration, 2015: 4.

[10] 张宗存, 丁学专, 杨波, 等. 超大幅宽低畸变成像系统设计与分析 [J]. 红外与毫米波学报, 2017, 36(6): 732-738.

    ZHANG Z C, DING X ZH, YANG B, et al.. Design and analysis of super large width and low distortion imaging system [J]. Journal of Infrared and Millimeter Waves, 2017, 36(6): 732-738. (in Chinese)

[11] 刘京, 李洪文, 邓永停. 基于扰动观测器的永磁同步电机电流环自适应滑模控制 [J]. 光学 精密工程, 2017, 25(5): 1229-1241.

    LIU J, LI H W, DENG Y T. Current adaptive sliding mode control based on disturbance observer for permanent magnet synchronous motor [J]. Opt. Precision Eng., 2017, 25(5): 1229-1241. (in Chinese)

[12] 翟少雄, 王长胜, 谭立, 等. 空间高精度扫描伺服系统的驱动控制 [J]. 光学 精密工程, 2016, 24(5): 1104-1111.

    ZHAI SH X, WANG CH SH, TAN L, et al.. Driving and controlling of high accuracy scanning servo-system in space [J]. Opt. Precision Eng., 2016, 24(5): 1104-1111. (in Chinese)

[13] 刘小勇, 曹开钦, 孙德新, 等. 空间超大幅宽低畸变红外成像扫描控制 [J]. 光学 精密工程, 2018, 26(1): 208-217.

    LIU X Y, CAO K Q, SUN D X, et al.. Scanning control method of spaceborne infrared imaging with super-swath and low distortion [J]. Opt. Precision Eng., 2018, 26(1): 208-217. (in Chinese)

刘小勇, 张宗存, 曹开钦, 孙德新, 刘银年. 长波红外相机在轨扫描成像畸变消除控制策略[J]. 光学 精密工程, 2018, 26(5): 1028. LIU Xiao-yong, ZHANG Zong-cun, CAO Kai-qin, SUN De-xin, LIU Yin-nian. Control strategy for distortion elimination of long-wave infrared camera on-orbit scanning imaging[J]. Optics and Precision Engineering, 2018, 26(5): 1028.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!