激光与光电子学进展, 2020, 57 (17): 170005, 网络出版: 2020-09-01   

光热转换纳米材料在肿瘤光热治疗中的应用 下载: 2917次

Application of Photothermal Conversion Nanomaterials in Tumor Photothermal Therapy
作者单位
1 陕西中医药大学药学院基础化学教研室, 陕西 西安 712046
2 陕西中医药大学协同创新中心, 陕西 西安 712046
3 陕西中医药大学附属医院肿瘤科, 陕西 咸阳 712000
引用该论文

李治, 千维娜, 魏思敏, 闫浩, 靳如意, 郭惠. 光热转换纳米材料在肿瘤光热治疗中的应用[J]. 激光与光电子学进展, 2020, 57(17): 170005.

Zhi Li, Weina Qian, Simin Wei, Hao Yan, Ruyi Jin, Hui Guo. Application of Photothermal Conversion Nanomaterials in Tumor Photothermal Therapy[J]. Laser & Optoelectronics Progress, 2020, 57(17): 170005.

参考文献

[1] Word HealthyOrganization. Cancer[Z/OL]. [2020-02-20].http:∥www.who.int/mediacentre/factsheets/fs297/en/.

[2] GoldmanL. Laser cancer research[M]. Berlin: Springer, 1966.

[3] Liu Y J, Bhattarai P, Dai Z F, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer[J]. Chemical Society Reviews, 2019, 48(7): 2053-2108.

[4] Shi J J, Kantoff P W, Wooster R, et al. Cancer nanomedicine: progress, challenges and opportunities[J]. Nature Reviews Cancer, 2017, 17(1): 20-37.

[5] Cai Y, Wei Z, Song C H, et al. Optical nano-agents in the second near-infrared window for biomedical applications[J]. Chemical Society Reviews, 2019, 48(1): 22-37.

[6] Ge X G, Fu Q R, Bai L, et al. Photoacoustic imaging and photothermal therapy in the second near-infrared window[J]. New Journal of Chemistry, 2019, 43(23): 8835-8851.

[7] Gai S L, Yang G X, Yang P P, et al. Recent advances in functional nanomaterials for light-triggered cancer therapy[J]. Nano Today, 2018, 19: 146-187.

[8] Abadeer N S, Murphy C J. Recent progress in cancer thermal therapy using gold nanoparticles[J]. The Journal of Physical Chemistry C, 2016, 120(9): 4691-4716.

[9] Dong L Y, Li Y C, Li Z, et al. Au nanocage-strengthened dissolving microneedles for chemo-photothermal combined therapy of superficial skin tumors[J]. ACS Applied Materials & Interfaces, 2018, 10(11): 9247-9256.

[10] Hou G H, Qian J M, Xu W J, et al. A novel pH-sensitive targeting polysaccharide-gold nanorod conjugate for combined photothermal-chemotherapy of breast cancer[J]. Carbohydrate Polymers, 2019, 212: 334-344.

[11] Zhang Y Y, Li J C, Jiang H, et al. Rapid tumor bioimaging and photothermal treatment based on GSH-capped red fluorescent gold nanoclusters[J]. RSC Advances, 2016, 6(68): 63331-63337.

[12] Bian K X, Zhang X W, Yang M X, et al. Dual-template cascade synthesis of highly multi-branched Au nanoshells with ultrastrong NIR absorption and efficient photothermal therapeutic intervention[J]. Journal of Materials Chemistry B, 2019, 7(4): 598-610.

[13] Liu Y J, Wang Z T, Liu Y, et al. Suppressing nanoparticle-mononuclear phagocyte system interactions of two-dimensional gold nanorings for improved tumor accumulation and photothermal ablation of tumors[J]. ACS Nano, 2017, 11(10): 10539-10548.

[14] Yin T, Li Y J, Bian K X, et al. Self-assembly synthesis of vapreotide-gold hybrid nanoflower for photothermal antitumor activity[J]. Materials Science and Engineering C, 2018, 93: 716-723.

[15] González-Rubio G, Díaz-Núnez P, Rivera A, et al. Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances[J]. Science, 2017, 358(6363): 640-644.

[16] Huang X Q, Tang S H, Mu X L, et al. Freestanding palladium nanosheets with plasmonic and catalytic properties[J]. Nature Nanotechnology, 2011, 6(1): 28-32.

[17] Tang S H, Chen M, Zheng N F. Sub-10-nm Pd nanosheets with renal clearance for efficient near-infrared photothermal cancer therapy[J]. Small, 2014, 10(15): 3139-3144.

[18] Zhu X M, Wan H Y, Jia H L, et al. Porous Pt nanoparticles with high near-infrared photothermal conversion efficiencies for photothermal therapy[J]. Advanced Healthcare Materials, 2016, 5(24): 3165-3172.

[19] Dumas A, Couvreur P. Palladium: a future key player in the nanomedical field?[J]. Chemical Science, 2015, 6(4): 2153-2157.

[20] Augustine S, Singh J, Srivastava M, et al. Recent advances in carbon based nanosystems for cancer theranostics[J]. Biomaterials Science, 2017, 5(5): 901-952.

[21] Tan C L, Cao X H, Wu X J, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 2017, 117(9): 6225-6331.

[22] Gu Z J, Zhu S, Yan L, et al. Graphene-based smart platforms for combined cancer therapy[J]. Advanced Materials, 2019, 31(9): 1800662.

[23] Sinha M, Gollavelli G, Ling Y. Exploring the photothermal hot spots of graphene in the first and second biological window to inactivate cancer cells and pathogens[J]. RSC Advances, 2016, 6(68): 63859-63866.

[24] Sobhani Z, Behnam M A, Emami F, et al. Photothermal therapy of melanoma tumor using multiwalled carbon nanotubes[J]. International Journal of Nanomedicine, 2017, 12: 4509-4517.

[25] Xu Y H, Shan Y L, Cong H L, et al. Advanced carbon-based nanoplatforms combining drug delivery and thermal therapy for cancer treatment[J]. Current Pharmaceutical Design, 2019, 24(34): 4060-4076.

[26] Zhao W, Li A H, Zhang A T, et al. Recent advances in functional-polymer-decorated transition-metal nanomaterials for bioimaging and cancer therapy[J]. ChemMedChem, 2018, 13(20): 2134-2149.

[27] Chen Y, Wang L Z, Shi J L. Two-dimensional non-carbonaceous materials-enabled efficient photothermal cancer therapy[J]. Nano Today, 2016, 11(3): 292-308.

[28] Gong L J, Yan L, Zhou R Y, et al. Two-dimensional transition metal dichalcogenide nanomaterials for combination cancer therapy[J]. Journal of Materials Chemistry B, 2017, 5(10): 1873-1895.

[29] Yan C L, Tian Q W, Yang S P. Recent advances in the rational design of copper chalcogenide to enhance the photothermal conversion efficiency for the photothermal ablation of cancer cells[J]. RSC Advances, 2017, 7(60): 37887-37897.

[30] Zhang S H, Sun C X, Zeng J F, et al. Ambient aqueous synthesis of ultrasmall PEGylated Cu2-x Se nanoparticles as a multifunctional theranostic agent for multimodal imaging guided photothermal therapy of cancer[J]. Advanced Materials, 2016, 28(40): 8927-8936.

[31] Zhou M, Zhang R, Huang M, et al. A chelator-free multifunctional [ 64Cu]-CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy[J]. Journal of the American Chemical Society, 2010, 132(43): 15351-15358.

[32] Ding X G, Fu D D, Kuang Y, et al. Seeded growth of Cu2-xSe nanocrystals and their size-dependent phototherapeutic effect[J]. ACS Applied Nano Materials, 2018, 1(7): 3303-3311.

[33] Ariyasu S, Mu J, Zhang X, et al. Investigation of thermally induced cellular ablation and heat response triggered by planar MoS2-based nanocomposite[J]. Bioconjugate Chemistry, 2017, 28(4): 1059-1067.

[34] Zhang X Y, Wu J R, Williams G R, et al. Dual-responsive molybdenum disulfide/copper sulfide-based delivery systems for enhanced chemo-photothermal therapy[J]. Journal of Colloid and Interface Science, 2019, 539: 433-441.

[35] Liu T, Liu Z. 2D MoS2 nanostructures for biomedical applications[J]. Advanced Healthcare Materials, 2018, 7(8): e1701158.

[36] Wang S G, Li K, Chen Y, et al. Biocompatible PEGylated MoS2 nanosheets: controllable bottom-up synthesis and highly efficient photothermal regression of tumor[J]. Biomaterials, 2015, 39: 206-217.

[37] Liu T, Shi S X, Liang C, et al. Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radio labeling and multimodal imaging guided photothermal therapy[J]. ACS Nano, 2015, 9(1): 950-960.

[38] Liu T, Chao Y, Gao M, et al. Ultra-small MoS2 nanodots with rapid body clearance for photothermal cancer therapy[J]. Nano Research, 2016, 9(10): 3003-3017.

[39] Yang H L, Zhao J L, Wu C Y, et al. Facile synthesis of colloidal stable MoS2 nanoparticles for combined tumor therapy[J]. Chemical Engineering Journal, 2018, 351: 548-558.

[40] Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253.

[41] Lin H, Wang X G, Yu L D, et al. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion[J]. Nano Letters, 2017, 17(1): 384-391.

[42] Yu X H, Cai X K, Cui H D, et al. Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy[J]. Nanoscale, 2017, 9(45): 17859-17864.

[43] Xuan J N, Wang Z Q, Chen Y Y, et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance[J]. Angewandte Chemie, 2016, 128(47): 14789-14794.

[44] Lin H, Wang Y W, Gao S S, et al. Theranostic 2D tantalum carbide (MXene)[J]. Advanced Materials, 2018, 30(4): 1703284.

[45] Lin H, Gao S S, Dai C, et al. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows[J]. Journal of the American Chemical Society, 2017, 139(45): 16235-16247.

[46] Yang X Y, Liu G Y, Shi Y H, et al. Nano-black phosphorus for combined cancer phototherapy: recent advances and prospects[J]. Nanotechnology, 2018, 29(22): 222001.

[47] Choi J R, Yong K W, Choi J Y, et al. Black phosphorus and its biomedical applications[J]. Theranostics, 2018, 8(4): 1005-1026.

[48] Qian X Q, Gu Z, Chen Y. Two-dimensional black phosphorus nanosheets for theranostic nanomedicine[J]. Materials Horizons, 2017, 4(5): 800-816.

[49] Yang X Y, Wang D Y, Shi Y H, et al. Black phosphorus nanosheets immobilizing Ce6 for imaging-guided photothermal/photodynamic cancer therapy[J]. ACS Applied Materials & Interfaces, 2018, 10(15): 12431-12440.

[50] Zeng X W, Luo M M, Liu G, et al. Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments[J]. Advanced Science, 2018, 5(10): 1800510.

[51] Cheng H B, Cui Y X, Wang R, et al. The development of light-responsive, organic dye based, supramolecular nanosystems for enhanced anticancer therapy[J]. Coordination Chemistry Reviews, 2019, 392: 237-254.

[52] Jung H S, Verwilst P, Sharma A, et al. Organic molecule-based photothermal agents: an expanding photothermal therapy universe[J]. Chemical Society Reviews, 2018, 47(7): 2280-2297.

[53] Chen R, Wang J J, Qiao H Z, et al. Organic photothermal conversion materials and their application in photothermal therapy[J]. Progress in Chemistry, 2017, 29(2/3): 329-336.

[54] Han Y H, Kankala R K, Wang S B, et al. Leveraging engineering of indocyanine green-encapsulated polymeric nanocomposites for biomedical applications[J]. Nanomaterials, 2018, 8(6): 360.

[55] Bhattarai P, Dai Z F. Cyanine based nanoprobes for cancer theranostics[J]. Advanced Healthcare Materials, 2017, 6(14): 1700262.

[56] Sheng Z H, Hu D H, Xue M M, et al. Indocyanine green nanoparticles for theranostic applications[J]. Nano-Micro Letters, 2013, 5(3): 145-150.

[57] Yoon H J, Lee H S, Lim J Y, et al. Liposomal indocyanine green for enhanced photothermal therapy[J]. ACS Applied Materials & Interfaces, 2017, 9(7): 5683-5691.

[58] Pan G Y, Jia H R, Zhu Y X, et al. Turning double hydrophilic into amphiphilic: IR825-conjugated polymeric nanomicelles for near-infrared fluorescence imaging-guided photothermal cancer therapy[J]. Nanoscale, 2018, 10(4): 2115-2127.

[59] Luo H H, Wang Q L, Deng Y B, et al. Mutually synergistic nanoparticles for effective thermo-molecularly targeted therapy[J]. Advanced Functional Materials, 2017, 27(39): 1702834.

[60] Zhou Y M, Liang X L, Dai Z F. Porphyrin-loaded nanoparticles for cancer theranostics[J]. Nanoscale, 2016, 8(25): 12394-12405.

[61] Zhao L Y, Liu Y M, Chang R, et al. Supramolecular photothermal nanomaterials as an emerging paradigm toward precision cancer therapy[J]. Advanced Functional Materials, 2019, 29(4): 1806877.

[62] Lovell J F, Jin C S, Huynh E, et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents[J]. Nature Materials, 2011, 10(4): 324-332.

[63] MacLaughlin C M, Ding L L, Jin C, et al. Porphysome nanoparticles for enhanced photothermal therapy in a patient-derived orthotopic pancreas xenograft cancer model: a pilot study[J]. Journal of Biomedical Optics, 2016, 21(8): 84002.

[64] Li X S, Kim C, Lee S A, et al. Nanostructured phthalocyanine assemblies with protein-driven switchable photoactivities for biophotonic imaging and therapy[J]. Journal of the American Chemical Society, 2017, 139(31): 10880-10886.

[65] He H, Ji S S, He Y, et al. Photoconversion-tunable fluorophore vesicles for wavelength-dependent photoinduced cancer therapy[J]. Advanced Materials, 2017, 29(19): 1606690.

[66] Chen Q, Liu X D, Zeng J F, et al. Albumin-NIR dye self-assembled nanoparticles for photoacoustic pH imaging and pH-responsive photothermal therapy effective for large tumors[J]. Biomaterials, 2016, 98: 23-30.

[67] Vines J B, Lim D, Park H. Contemporary polymer-based nanoparticle systems for photothermal therapy[J]. Polymers, 2018, 10(12): 1357.

[68] Jiang Y Y, Pu K Y. Multimodal biophotonics of semiconducting polymer nanoparticles[J]. Accounts of Chemical Research, 2018, 51(8): 1840-1849.

[69] Yang J, Choi J, Bang D, et al. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells[J]. Angewandte Chemie International Edition, 2011, 50(2): 441-444.

[70] Wang J P, Guo F, Yu M, et al. Rapamycin/DiR loaded lipid-polyaniline nanoparticles for dual-modal imaging guided enhanced photothermal and antiangiogenic combination therapy[J]. Journal of Controlled Release, 2016, 237: 23-34.

[71] Cheng L, Yang K, Chen Q, et al. Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer[J]. ACS Nano, 2012, 6(6): 5605-5613.

[72] Yang K, Xu H, Cheng L, et al. In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles[J]. Advanced Materials, 2012, 24(41): 5586-5592.

[73] Wang Z, Duan Y O, Duan Y W. Application of polydopamine in tumor targeted drug delivery system and its drug release behavior[J]. Journal of Controlled Release, 2018, 290: 56-74.

[74] Cai Y, Liang P P, Tang Q Y, et al. Diketopyrrolopyrrole-triphenylamine organic nanoparticles as multifunctional reagents for photoacoustic imaging-guided photodynamic/photothermal synergistic tumor therapy[J]. ACS Nano, 2017, 11(1): 1054-1063.

[75] Lyu Y, Zeng J F, Jiang Y Y, et al. Enhancing both biodegradability and efficacy of semiconducting polymer nanoparticles for photoacoustic imaging and photothermal therapy[J]. ACS Nano, 2018, 12(2): 1801-1810.

[76] Wilhelm S, Tavares A J, Dai Q, et al. Analysis of nanoparticle delivery to tumours[J]. Nature Reviews Materials, 2016, 1(5): 16014.

[77] Vankayala R, Hwang K C. Near-infrared-light-activatable nanomaterial-mediated phototheranostic nanomedicines: an emerging paradigm for cancer treatment[J]. Advanced Materials, 2018, 30(23): 1706320.

[78] Walkey C D, Olsen J B, Guo H B, et al. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake[J]. Journal of the American Chemical Society, 2012, 134(4): 2139-2147.

[79] Hou J, Du Y, Zhang T, et al. PEGylated (NH4)xWO3 nanorod mediated rapid photonecrosis of breast cancer cells[J]. Nanoscale, 2019, 11(21): 10209-10219.

[80] Xie W S, Gao Q, Wang D, et al. Doxorubicin-loaded Fe3O4@MoS2-PEG-2DG nanocubes as a theranostic platform for magnetic resonance imaging-guided chemo-photothermal therapy of breast cancer[J]. Nano Research, 2018, 11(5): 2470-2487.

[81] Chen D P, Tang Q Y, Zou J H, et al. pH-responsive PEG-doxorubicin-encapsulated aza-BODIPY nanotheranostic agent for imaging-guided synergistic cancer therapy[J]. Advanced Healthcare Materials, 2018, 7(7): 1701272.

[82] Khunsuk P O, Chawalitpong S, Sawutdeechaikul P, et al. Gold nanorods stabilized by biocompatible and multifunctional zwitterionic copolymer for synergistic cancer therapy[J]. Molecular Pharmaceutics, 2018, 15(1): 164-174.

[83] Jiang H Y, Chen D, Guo D B, et al. Zwitterionic gold nanorods: low toxicity and high photothermal efficacy for cancer therapy[J]. Biomaterials Science, 2017, 5(4): 686-697.

[84] Deng W X, Wu Q, Sun P F, et al. Zwitterionic diketopyrrolopyrrole for fluorescence/photoacoustic imaging guided photodynamic/photothermal therapy[J]. Polymer Chemistry, 2018, 9(20): 2805-2812.

[85] Blanco E, Shen H F, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery[J]. Nature Biotechnology, 2015, 33(9): 941-951.

[86] Ban Q F, Bai T, Duan X, et al. Noninvasive photothermal cancer therapy nanoplatforms via integrating nanomaterials and functional polymers[J]. Biomaterials Science, 2017, 5(2): 190-210.

[87] Hu C M J, Zhang L, Aryal S, et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform[J]. PNAS, 2011, 108(27): 10980-10985.

[88] Hu C J, Fang R H, Wang K, et al. Nanoparticle biointerfacing by platelet membrane cloaking[J]. Nature, 2015, 526(7571): 118-121.

[89] Zhang N, Li M H, Sun X T, et al. NIR-responsive cancer cytomembrane-cloaked carrier-free nanosystems for highly efficient and self-targeted tumor drug delivery[J]. Biomaterials, 2018, 159: 25-36.

[90] Meng Q F, Rao L, Zan M H, et al. Macrophage membrane-coated iron oxide nanoparticles for enhanced photothermal tumor therapy[J]. Nanotechnology, 2018, 29(13): 134004.

[91] Zhu D M, Xie W, Xiao Y S, et al. Erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy[J]. Nanotechnology, 2018, 29(8): 084002.

[92] Zhen X, Cheng P H, Pu K Y. Recent advances in cell membrane-camouflaged nanoparticles for cancer phototherapy[J]. Small, 2019, 15(1): 1804105.

[93] Pan L M, Liu J N, Shi J L. Cancer cell nucleus-targeting nanocomposites for advanced tumor therapeutics[J]. Chemical Society Reviews, 2018, 47(18): 6930-6946.

[94] Ma Z Y, Han K, Dai X X, et al. Precisely striking tumors without adjacent normal tissue damage via mitochondria-templated accumulation[J]. ACS Nano, 2018, 12(6): 6252-6262.

[95] Karimi M, Ghasemi A, Sahandi Zangabad P, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems[J]. Chemical Society Reviews, 2016, 45(5): 1457-1501.

[96] Ju E G, Dong K, Liu Z, et al. Tumor microenvironment activated photothermal strategy for precisely controlled ablation of solid tumors upon NIR irradiation[J]. Advanced Functional Materials, 2015, 25(10): 1574-1580.

[97] Xue F F, Wen Y, Wei P, et al. A smart drug: a pH-responsive photothermal ablation agent for Golgi apparatus activated cancer therapy[J]. Chemical Communications, 2017, 53(48): 6424-6427.

[98] Tang Q Y, Xiao W Y, Huang C H, et al. pH-triggered and enhanced simultaneous photodynamic and photothermal therapy guided by photoacoustic and photothermal imaging[J]. Chemistry of Materials, 2017, 29(12): 5216-5224.

[99] Ni D L, Jiang D W, Valdovinos H F, et al. Bioresponsive polyoxometalate cluster for redox-activated photoacoustic imaging-guided photothermal cancer therapy[J]. Nano Letters, 2017, 17(5): 3282-3289.

[100] Gong F, Cheng L, Yang N L, et al. Bimetallic oxide MnMoOx nanorods for in vivo photoacoustic imaging of GSH and tumor-specific photothermal therapy[J]. Nano Letters, 2018, 18(9): 6037-6044.

[101] Gao H B, Fang X M, Xiang J, et al. Development of tungsten bronze nanorods for redox-enhanced photoacoustic imaging-guided photothermal therapy of tumors[J]. RSC Advances, 2018, 8(47): 26713-26719.

[102] Chen Q, Liang C, Sun X Q, et al. H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay[J]. PNAS, 2017, 114(21): 5343-5348.

[103] Zhen X, Zhang J J, Huang J G, et al. Macrotheranostic probe with disease-activated near-infrared fluorescence, photoacoustic, and photothermal signals for imaging-guided therapy[J]. Angewandte Chemie International Edition, 2018, 57(26): 7804-7808.

[104] Zhou J J, Jiang Y Y, Hou S, et al. Compact plasmonic blackbody for cancer theranosis in the near-infrared II window[J]. ACS Nano, 2018, 12(3): 2643-2651.

[105] Han X X, Huang J, Jing X X, et al. Oxygen-deficient black titania for synergistic/enhanced sonodynamic and photoinduced cancer therapy at near infrared-II biowindow[J]. ACS Nano, 2018, 12(5): 4545-4555.

[106] Guo B, Sheng Z H, Hu D H, et al. Through scalp and skull NIR-II photothermal therapy of deep orthotopic brain tumors with precise photoacoustic imaging guidance[J]. Advanced Materials, 2018, 30(35): 1802591.

[107] Jiang Y Y, Li J C, Zhen X, et al. Dual-peak absorbing semiconducting copolymer nanoparticles for first and second near-infrared window photothermal therapy: a comparative study[J]. Advanced Materials, 2018, 30(14): 1705980.

[108] de Melo-Diogo D, Pais-Silva C, Dias D R, et al. Strategies to improve cancer photothermal therapy mediated by nanomaterials[J]. Advanced Healthcare Materials, 2017, 6(10): 1700073.

[109] Xu W J, Meng Z Q, Yu N, et al. PEGylated CsxWO3 nanorods as an efficient and stable 915 nm-laser-driven photothermal agent against cancer cells[J]. RSC Advances, 2015, 5(10): 7074-7082.

[110] Sharker S M, Kim S M, Lee J E, et al. Functionalized biocompatible WO3 nanoparticles for triggered and targeted in vitro and in vivo photothermal therapy[J]. Journal of Controlled Release, 2015, 217: 211-220.

[111] Zhang B, Wang H F, Shen S, et al. Fibrin-targeting peptide CREKA-conjugated multi-walled carbon nanotubes for self-amplified photothermal therapy of tumor[J]. Biomaterials, 2016, 79: 46-55.

李治, 千维娜, 魏思敏, 闫浩, 靳如意, 郭惠. 光热转换纳米材料在肿瘤光热治疗中的应用[J]. 激光与光电子学进展, 2020, 57(17): 170005. Zhi Li, Weina Qian, Simin Wei, Hao Yan, Ruyi Jin, Hui Guo. Application of Photothermal Conversion Nanomaterials in Tumor Photothermal Therapy[J]. Laser & Optoelectronics Progress, 2020, 57(17): 170005.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!