中国激光, 2013, 40 (5): 0513002, 网络出版: 2013-04-09   

中国典型地区气溶胶激光雷达比反演与分析 下载: 559次

Retrieval and Analysis of Aerosol Lidar Ratio at Several Typical Regions in China
作者单位
1 中国科学院遥感应用研究所, 北京 100101
2 中国科学院大学, 北京 100049
摘要
为了解决大部分微脉冲激光雷达无法独立获取激光雷达比的问题,利用榆林、北京、寿县和太湖4个地区气溶胶监测网(AERONET)站点观测的气溶胶粒子谱分布和复折射指数产品,通过米氏散射方法计算得到气溶胶激光雷达比。根据得到的长时间序列气溶胶激光雷达比分析了不同地区激光雷达比的季节变化和年变化特征,并结合Angstrom波长指数对不同地区气溶胶类型进行了简单分析。得到了以下结论:不同地区同季节以及同地区不同季节激光雷达比相差较大;观测期间榆林地区年平均激光雷达比最小,多年平均值为(36.3±15)sr;北京、太湖和寿县地区的雷达比年均值较大;北京地区激光雷达比年均值的最低值出现在2008年,其他地区的年均值变化不大;激光雷达比与Angstrom波长指数能够区分各地区气溶胶主要类型且均出现由北到南递增的趋势。
Abstract
In order to solve the problem that most of micro-pulse lidars cannot obtain lidar ratio (LR) independently, LR from aerosol size distribution and complex refractive index is acquired with Mie scattering theory. Four aerosol robotic network (AERONET) stations that include SACOL station, Beijing station, Shouxian station and Taihu station are used. The LR variation characteristics of seasonal-mean and years′ average values in different regions and aerosol types are analyzed by using LR and Angstrom wavelength index. The conclusions are as follows: LRs in chinese different regions and seasons show complex and different variation characteristics; the LR in Yulin is the least and years′ average value is (36.3±15)sr; LRs are relatively larger in Taihu, Beijing and Shouxian; annual average value of 2008 is smaller than other years in Beijing and there is little variation of years′ average value in other regions. LR and Angstrom wavelength index can distinguish aerosol type and they both increase from north to south in the analysis regions.
参考文献

[1] G. L. Schuster, M. Vaughan, D. Macdonnell et al.. Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the lidar ratio of dust[J]. Atmos. Chem. Phys. Discuss., 2012, 12(5): 11641~11697

[2] A. K. Srivastava, S. N. Tripathi, S. Dey et al.. Inferring aerosol types over the Indo-Gangetic Basin from ground based sunphotometer measurements[J]. Atmospheric Research, 2012, 109-110: 64~75

[3] A. Pietruczuk, J. Podgórski. The lidar ratio derived from sun-photometer measurements at Belsk Geophysical Observatory[J]. Acta Geophysica, 2009, 57(2): 476~493

[4] J. Raut, P. Chazette. Retrieval of aerosol complex refractive index from a synergy between lidar, sunphotometer and in situ measurements during LISAIR experiment[J]. Atmos. Chem. Phys. Discuss., 2007, 7(1): 2797~2815

[5] F. Mao, W. Gong, Z. Zhu et al.. The ground-based lidar combined with sunphotometer for aerosol optical depth retrieval[C]. SPIE, 2008, 7145: 71452R

[6] Y. Sasano, E. V. Browell, S. Ismail. Error caused by using a constant extinction/backscattering ratio in the lidar solution[J]. Appl. Opt., 1985, 24(22): 3929~3932

[7] F. G. Fernald. Analysis of atmospheric lidar observations[J]. Appl. Opt., 1984, 23(5): 652~653

[8] V. A. Kovalev, M. P. Bristow. Compensational three-wavelength differential-absorption lidar technique for reducing the influence of differential scattering on ozone-concentration measurements[J]. Appl. Opt., 1996, 35(24): 4790~4797

[9] 王向川, 饶瑞中. 大气气溶胶和云雾粒子的激光雷达比[J]. 中国激光, 2005, 32(10): 1321~1325

    Wang Xiangchuan, Rao Ruizhong. Lidar ratios for atmospheric aerosol and cloud particles[J]. Chinese J. Lasers, 2005, 32(10): 1321~1325

[10] S. J. Doherty, T. L. Anderson, R. J. Charlson. Measurement of the lidar ratio for atmospheric aerosols with a 180° backscatter nephelometer[J]. Appl. Opt., 1999, 38(9): 1823~1832

[11] J. D. Spinhirne, J. A. Reagan, B. M. Herman. Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique[J]. J. Appl. Met., 1980, 19(4): 426~438

[12] S. Otto, E. Bierwirth, B. Weinzierl et al.. Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal model particles[J]. Tellus B, 2009, 61(1): 270~296

[13] F. Dulac, P. Chazette. Airborne study of a multi-layer aerosol structure in the eastern Mediterranean observed with the airborne polarized lidar ALEX during a STAAARTE campaign (7 June 1997)[J]. Atmos. Chem. Phys., 2003, 3(5): 1817~1831

[14] C. Cattrall, J. Reagan, K. Thome et al.. Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations[J]. J. Geophysical Research, 2005, 110(D10): D10S11

[15] Anders Angstrm. The parameters of atmospheric turbidity[J]. Tellus, 1964, 16(1): 64~75

[16] B. N. Holben, T. I. E. I. Slutsker, D. Tar et al.. AERONET: a federated instrument network and data archive for aerosol characterization[J]. 1998, 66(1): 1~16

[17] Z. Liu, A. Omar, Y. Hu et al.. CALIOP Algorithm Theoretical Basis Document, Part 3: Scene Classification Algorithms[R]. NASA Langley Reseach Center Doc. PC-SCI-202, 2005. 1~56

[18] 邬明权,牛铮, 乔玉良 等. 基于MODIS数据的北京气溶胶类型特性与影响因素分析[J]. 地球信息科学学报, 2009, 11(4): 541~548

    Wu Mingquan, Niu Zheng, Qiao Yuliang et al.. Aerosol types and its affecting factors over Beijing: based on MODIS data[J]. J. Geo-Information Science, 2009, 11(4): 541~548

[19] 曹贤洁, 张镭, 李霞 等. 张掖地区气溶胶吸收和散射特性分析[J]. 高原气象, 2010, 29(5): 1246~1253

    Cao Xianjie, Zhang Lei, Li Xia et al.. Analyses on aerosol absorption and scattering properties in Zhangye region[J]. Plateau Meteorology, 2010, 29(5): 1246~1253

[20] 伍德侠, 刘建国, 陆亦怀 等. 北京奥运期间的碳黑气溶胶观测研究[J]. 大气与环境光学学报, 2009, 4(4): 300~306

    Wu Dexia, Liu Jianguo, Lu Yihuai et al.. Observation of black carbon aerosol during Beijing Olympic Games[J]. J. Atmospheric and Environmental Optics, 2009, 4(4): 300~306

[21] 饶加旺, 马荣华, 段洪涛 等. 太湖上空大气气溶胶光学厚度及其特征分析[J]. 环境科学, 2012, 33(7): 2158~2164

    Rao Jiawang, Ma Ronghua, Duan Hongtao et al.. Aerosol optical thickness of the atmospheric aerosol over Taihu Lake and its features: results of in-site measurements[J]. Environmental Science & Technology, 2012, 33(7): 2158~2164

张朝阳, 苏林, 陈良富. 中国典型地区气溶胶激光雷达比反演与分析[J]. 中国激光, 2013, 40(5): 0513002. Zhang Zhaoyang, Su Lin, Chen Liangfu. Retrieval and Analysis of Aerosol Lidar Ratio at Several Typical Regions in China[J]. Chinese Journal of Lasers, 2013, 40(5): 0513002.

本文已被 30 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!