光子学报, 2014, 43 (10): 1011004, 网络出版: 2014-11-06   

基于三维分数阶微分增强的边缘曲面重构算法

The Reconstruction Algorithm of Boundary Surfaces Based on the 3D Fractional Differential Enhancement
作者单位
1 宁夏大学 研究生院,银川 750021
2 上海交通大学 电子与电气工程学院自动化系图像处理与模式识别研究所,上海 200240
摘要
提出一种基于三维分数阶微分增强的三维边缘曲面重构算法,可重构出更多的三维不规则目标的细节结构信息,克服了原边缘曲面重构算法重构细节信息不充分的缺点.根据分数阶微分傅里叶变换的可分离性原理,将二维分数阶微分算子推广至三维并推导出三维分数阶离散滤波模板,利用三维分数阶微分对图像具有非线性增强作用的特性,对三维切片数据场进行三维分数阶微分增强.与传统三维边缘曲面重构算法相比,经过三维分数阶微分增强且采用分数阶梯度追踪细节改进的重构算法,能够重构出更丰富的三维目标细节结构信息.算法运用于神经元细胞的共焦显微图像中三维不规则目标的边缘曲面重构,实验结果验证了该算法的正确性和高效性,可推广应用至生物医学领域的三维可视化研究.
Abstract
An improved reconstruction algorithm of the boundary surfaces within 3D images was proposed based on the fractional differential, which can reconstruct more detailed structures of the 3D irregular biomedical objectives. Thus, the deficiency of reconstruction more detailed information in the was proposed based on the fractional differential, which can reconstruct more detailed structures of the 3D irregular biomedical objectives. Thus, the deficiency of reconstruction more detailed information in the traditional algorithm was overcome. According to the separateness of the Fourier Transformation of the fractional differential, the 2D calculus was extended to 3D, and the 3D discrete templates were deduced. Due to the nonlinear enhancement, the 3D fractional differential can enhancement the 3D slice data significantly. By comparison with the traditional reconstruction method of the 3D boundary surfaces, the improved algorithm could detect and extract more detailed 3D structure information by using the 3D fractional differential. The proposed algorithm was applied in the reconstruction of the 3D irregular structure of the neuron within confocal microscopy images, which demonstrated the high efficiency and property, it can be easily extended to other research fields of 3D visualization.
参考文献

[1] 姚保利, 雷铭, 薛彬, 等. 高分辨和超分辨光学成像技术在空间和生物中的应用[J]. 光子学报, 2012, 40(11): 1607-1618.

    YAO Bao-Li, LEI Ming, XUE Bing, et al. Progress and applications of high-resolution and super-resolution optical imaging in space and biology[J]. Acta Photonica Sinica, 2011, 40(11): 1607-1618.

[2] 李朝辉.激光扫描实时共聚焦显微成像系统设计[J]. 光子学报,2011,40(5): 007.

    LI Zhao-hui. Design and optimization in constructing an in-vivo confocal laser scanning microscopy[J]. Acta Photonica Sinica, 2011, 40(5): 007.

[3] AL-KOFAHI K A, LASEK S, SZAROWSKI D H, et al. Rapid automated three-dimensional tracing of neurons from confocal image stacks[J]. IEEE Transactions on Information Technology in Biomedicine, 2002, 6(2): 171-187.

[4] BUCHER D, SCHOLZ M, STETTER M, et al. Correction methods for three-dimensional reconstructions from confocal images: I. Tissue shrinking and axial scaling[J]. Journal of Neuroscience Methods, 2000, 100(1): 135-143.

[5] CAI H, XU X, LU J, et al. Repulsive force based snake model to segment and track neuronal axons in 3D microscopy image stacks[J]. Neuroimage, 2006, 32(4): 1608-1620.

[6] LORENSEN E, CLINE E. Marching cubes: a high resolution 3D surface construction algorithm [J]. Computer Graphics, 1987, 21(4): 163-169.

[7] WANG L, BAI J, HE P, et al. A computational framework for approximating boundary surfaces in 3-D biomedical images[J]. IEEE Transactions on Information Technology in Biomedicine, 2007, 11(6): 668-682.

[8] 马瑜,王利生,唐渊渊.三维图像中阶梯型边缘曲面追踪算法[J].计算机辅助设计与图形学学报, 2007,19(3):329-333.

    MA Yu, WANG Li-sheng, TANG Yuan-yuan. A novel algorithm for tracking step-like edge surfaces within 3D images[J]. Journal of Computer-Aided Design and Computer Graphics, 2007, 19(3): 329-333.

[9] OLDHAM K B, SPANIER J. The fractional calculus[M]. Dover, 1974.

[10] CHEN Y Q, MOORE K L. Discretization schemes for fractional-order differentiators and integrators[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2002, 49(3): 363-367.

[11] 蒲亦非,王卫星,周激流, 等.数字图像纹理细节的分数阶微分检测及其分数阶微分滤波器实现[J].中国科学: E 辑, 2008, 38(12): 2252-2272.

    PU Yi-fei, WANG Wei-xing, ZHOU Ji-liu, et al. Fractional-order derivative detection of texture of image and the realize of fractional-order derivative filtering[J]. Science in China (Series E, Information Sciences), 2008, 38(12): 2252-2272.

[12] 蒲亦非. 将分数阶微分演算引入数字图像处理[J]. 四川大学学报: 工程科学版, 2007, 39(3): 124-132.

    PU Yi-fei. Application of fractional differential approach to digital image processing. journal of sichuan university[J]. Engineering Science Edition, 2007, 39(3): 124-132.

[13] PU Y F, ZHOU J L, YUAN X. Fractional differential mask: a fractional differential-based approach for multiscale texture enhancement[J]. IEEE Transactions on Image Processing, 2010, 19(2): 491-511.

[14] 杨柱中, 周激流, 晏祥玉, 等. 基于分数阶微分的图像增强[J]. 计算机辅助设计与图形学学报, 2008, 20(3): 343-348.

    YANG Zhu-zhong, ZHOU Ji-liu, YAN Xiang-yu, et al. Image enhancement based on fractional differentials[J]. Journal of Computer-Aided Design and Computer Graphics, 2008, 20(3): 343-348.

[15] 马瑜, 张艳宁, 王利生. 噪音工业计算机断层图像中追踪三维边缘曲面[J]. 光子学报, 2013, 42(8): 916-923.

    MA Yu, ZHANG Yan-ning, WANG Li-sheng. Three dimensional edge surfaces tracked from noisy industrial CT slice images[J]. Acta Photonica Sinica. 2013, 42(8): 916-923.

马瑜, 赵九龙, 余婷, 李爽. 基于三维分数阶微分增强的边缘曲面重构算法[J]. 光子学报, 2014, 43(10): 1011004. MA Yu, ZHAO Jiu-long, YU Ting, LI Shuang. The Reconstruction Algorithm of Boundary Surfaces Based on the 3D Fractional Differential Enhancement[J]. ACTA PHOTONICA SINICA, 2014, 43(10): 1011004.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!