强激光与粒子束, 2017, 29 (6): 061001, 网络出版: 2017-06-21   

大口径轻量化主镜的温度场等效模型理论计算

Equivalent analytical calculation of the temperature field of the lightweighted primary mirror for large-aperture telescope
谭玉凤 1,2,3,*王继红 1,2任戈 1,2朱福音 1,2,3
作者单位
1 中国科学院 光电技术研究所, 成都 610209
2 中国科学院 光束控制重点实验室, 成都 610209
3 中国科学院大学, 北京 100039
摘要
针对大口径望远镜主镜在环境温度变化和太阳辐照变化引起的温度场变化进行了理论分析,根据圆柱坐标下设立的非稳态热传导方程和边界条件,利用分离变量法和格林函数法求解了主镜的温度场分布。为了验证求解的有效性,利用求得的温度场解析式和有限元软件分别分析了2.8 m口径望远镜实心主镜,反射面径向温度分布具有良好的一致性。表明该理论解析式能够较好地反映主镜反射面的温度场分布。将轻量化主镜进行无筋板的薄型镜热模型等效,并分别对两种镜子的温度场进行仿真计算,以此验证等效模型的正确性。轻量化主镜温度场的等效理论计算结果在主镜的早期设计研究阶段具有良好的参考价值。
Abstract
The thermal loads of ambient temperature and solar radiation around the telescope directly influence the temperature distribution within the primary mirror for a large-aperture telescope. Based on the unsteady heat conduction and boundary condition in the cylindrical coordinate system, the analytical temperature field for the primary mirror is calculated by separation of variables and Green’s function method. To verify the theoretical model, the temperature distribution of a 2.8 m aperture solid mirror is calculated by the analytical solution. The calculated radial temperature distribution at the optical surface is in good agreement with those of FEA method, which reveal that the analytical solution can well reflect temperature distribution at the optical surface. A lightweighted mirror is equivalent to a thin mirror without ribs in the thermal analysis. The FEA analysis is conducted with both the mirror models, which verifies the validity of the equivalent model. The equivalent analytical calculation results of the temperature field for the lightweighted primary mirror have a significant reference value in the early design of the primary mirror for a large-aperture telescope.
参考文献

[1] Bely P Y. The design and construction of large optical telescopes[M].New York: Springer Press, 2002: 356-358.

[2] 程景全. 天文望远镜原理和设计[M].北京: 中国科学技术出版社, 2003: 3-18. (Cheng Jingquan. Theory and design of astronomical telescope. Beijing: Chinese Science and Technology Press, 2003: 3-18)

[3] Martin H M, Allen R G, Burge J H, et al. Fabrication of mirrors for the Magellan telescopes and the Large Binocular Telescope[C]//Proc of SPIE. 2003, 4837: 609-618.

[4] Martin H M, Angel J R P, Burge J H, et al. Design and manufacture of 8.4 m primary mirror segments and supports for the GMT[C]//Proc of SPIE. 2006: 62730E.

[5] Neill D, Hileman E. LSST telescope primary/tertiary mirror cell assembly[C]//Proc of SPIE. 2010: 77332Q.

[6] Sü M, Volkmer R, Eisentrger P. GREGOR M1 mirror and cell design: effects of different mirror substrates on the telescope design[C]//Proc of SPIE. 2010: 77391I.

[7] Banyal R K, Ravindra B, Chatterjee S. Opto-thermal analysis of a lightweighted mirror for solar telescope[J].Optics Express, 2013, 21(6): 7065-7081.

[8] Bittner H, Erdmann M, Haberler P, et al. SOFIA primary mirror assembly: structural properties and optical performance[C]//Proc of SPIE. 2003, 4857: 266-273.

[9] 吴小霞. 4 m SiC主镜的轻量化及支撑技术[J].长春理工大学学报(自然科学版), 2003, 36(6): 10-14. (Wu Xiaoxia. Lightweight and support technology of a 4 m SiC primary mirror. Journal of Changchun University of Science and Technology (Natural Science Edition), 2003, 36(6): 10-14)

[10] 张俊. 蜂窝镜温度与镜面视宁度控制方法研究[D].北京: 中国科学院大学, 2013: 53-56. (Zhang Jun. Study on control methods of honeycomb mirror temperature and mirror seeing. Beijing: University of Chinese Academy of Sciences, 2013: 53-56)

[11] 杨世铭, 陶文铨. 传热学[M].北京: 高等教育出版社, 2006: 41-45. (Yang Shiming, Tao Wenquan. Heat transfer. Beijing: Higher Education Press, 2006: 41-45)

[12] 刘明强, 李斌成. 光学薄膜样品的温度场和形变场分析[J].物理学报, 2008, 57(6): 3402-3409. (Liu Mingqiang, Li Bincheng. Analysis of temperature and deformation fields in an optical coating sample. Acta Physica Sinica, 2008, 57(6): 3402-3409)

[13] 陆培华, 王润文. 高功率激光器窗口三维温度场分析及其热透镜研究[J].光学学报, 2001, 21(8): 965-969. (Lu Peihua, Wang Runwen. Three-dimensional temperature distribution analysis and thermal lens effect calculation for high power laser windows. Acta Optica Sinica, 2001, 21(8): 965-969)

[14] 何婷, 赵子文, 程雪丽, 等. CO2激光加热硅芯光纤预制棒的温场分布[J].强激光与粒子束, 2016, 28: 091003. (He Ting, Zhao Ziwen, Cheng Xueli, et al. Temperature distribution of preform in drawing silicon core optical fiber with CO2 laser heating. High Power Laser and Particle Beams, 2016, 28: 091003)

[15] 贾力, 方肇洪, 钱兴华. 高等传热学[M].北京: 高等教育出版社, 2003: 65-74. (Jia Li, Fang Zhaohong, Qian Xinghua. Advanced heat transfer. Beijing: Higher Education Press, 2003: 65-74)

[16] 王怀玉. 物理学中的数学方法[M].北京: 科学出版社, 2013: 207-382. (Wang Huaiyu. Mathematical methods in physics. Beijing: Science Press, 2013: 207-382)

[17] 王艳茹. 光学元件吸收损耗和热变形检测技术研究[D].北京: 中国科学院研究生院, 2011: 71. (Wang Yanru. Study on optical testing methods for weak absorptance and thermal deformation of optical components. Beijing: Graduate University of Chinese Academy of Sciences, 2011: 71)

[18] Zago L. An engineering handbook for local and dome seeing[C]//Proc of SPIE. 1997, 2871: 726-736.

[19] 李斌成, 曾昭信, 何舜华. 光热变形理论中热弹方程的解[J].电子科技大学学报, 1992, 21(5): 524-529. (Li Bincheng, Zeng Zhaoxin, He Shunhua. A solution to thermoelastic equation relevant to photothermal deformation in solids. Journal of UEST of China, 1992, 21(5): 524-529)

[20] Doyle K B, Genberg V L, Michel G J. Integrated optomechanical analysis[M].Bellingham: SPIE Press, 2012: 101-145.

谭玉凤, 王继红, 任戈, 朱福音. 大口径轻量化主镜的温度场等效模型理论计算[J]. 强激光与粒子束, 2017, 29(6): 061001. Tan Yufeng, Wang Jihong, Ren Ge, Zhu Fuyin. Equivalent analytical calculation of the temperature field of the lightweighted primary mirror for large-aperture telescope[J]. High Power Laser and Particle Beams, 2017, 29(6): 061001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!