应用光学, 2019, 40 (6): 1152, 网络出版: 2020-02-11   

光声光谱气体传感技术研究进展

Recent advances of photoacoustic spectroscopy techniques for gases sensing
作者单位
中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
摘要
光声光谱是通过光声效应把样品吸收光谱转换成声波探测, 实现样品成分、浓度分析检测的一种光谱传感技术, 是光谱学的一个重要分支。光声光谱除了具有吸收光谱的高选择性、高灵敏度外, 还具有信号只跟样品光吸收有关, 不受散射光影响, 零背景,信号与光功率成正比以及信号探测器不受光波长影响等诸多优点。在环境监测、工业过程控制与检测、医学诊断和**危化品检测等领域得到了越来越多的应用, 呈现出快速发展的趋势。除了传统的共振光声光谱技术, 近年来先后出现了悬臂增强型光声光谱、石英音叉谐振增强型光声光谱、多通道光声光谱等各具特色的新技术。对光声光谱气体传感技术的研究进展进行了介绍, 并分析了其应用前景和未来发展趋势。
Abstract
Photoacoustic spectroscopy has been an important branch of spectroscopy, which refers to a kind of spectral sensing technology that converts sample absorbed optical energy into acoustic detection wave through photoacoustic effect and realizes detection of sample composition and concentration analysis with acoustic sensor. In addition to high selectivity and high sensitivity of the spectrum absorption, photoacoustic spectroscopy offers several intrinsic attractive features, including signal only related to sample light absorption, free from scattered light, zero background and signal proportional to optical power, as well as measured with wavelength-independent acoustic transducers. More and more applications have been found in the fields of environmental monitoring, industrial process control and detection, medical diagnosis and hazardous chemicals detection in national defense. Besides the traditional resonant photoacoustic spectroscopy technology, there have been new techniques such as cantilever enhanced photoacoustic spectroscopy, quartz tuning fork enhanced photoacoustic spectroscopy and multi-channel photoacoustic spectroscopy. The recent advances of photoacoustic spectroscopy techniques for gases sensing are reviewed, and their application prospects and future development trends are analyzed.
参考文献

[1] BELL A G. On the production and reproduction of sound by light[J]. American Journal of Science, 1880 (118): 305-324.

[2] KERR E L, ATWOOD J G. The laser illuminated absorptivity spectrophone: A method for measurement of weak absorptivity in gases at laser wavelengths[J]. Applied Optics, 1968, 7(5): 915-921.

[3] KREUZER L B. Ultralow gas concentration infrared absorption spectroscopy[J]. Journal of Applied Physics,1971, 42(7): 2934-2943.

[4] HARSHBARGER W R, ROBIN M B. Opto-acoustic effect: Revival of an old technique for molecular spectroscopy[J]. Accounts of Chemical Research, 1973, 6(10): 329-334.

[5] BRUCE C W, PINNICK R G. In-situ measurements of aerosol absorption with a resonant cw laser spectrophone[J]. Applied Optics, 1977, 16(7): 1762.

[6] YIN X K, DONG L, WU H P, et al. Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5W blue multimode diode laser[J]. Sensors and Actuators B: Chemical, 2017, 247: 329-335.

[7] ZHOU Y, CAO Y, ZHU G D, et al. Detection of nitrous oxide by resonant photoacoustic spectroscopy based on mid infrared quantum cascade laser[J]. Acta Phys. Sin., 2018,67: 084201-1-084201-7.

[8] DEWEY C F Jr, KAMM R D, HACKETT C E. Acoustic amplifier for detection of atmospheric pollutants[J]. Applied Physics Letters,1973, 23(11): 633-635.

[9] KAMM R D. Detection of weakly absorbing gases using a resonant optoacoustic method[J]. Journal of Applied Physics,1976, 47(8): 3550-3558.

[10] GUPTA J P, SACHDEV R N. Theoretical model of an optoacoustic detector[J]. Applied Physics Letters,1980, 36(12): 960-962.

[11] BIJNEN F G C, REUSS J, HARREN F J M. Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection[J]. Review of Scientific Instruments,1996, 67(8): 2914-2923.

[12] MIKLS A, HESS P, BOZKI Z. Application of acoustic resonators in photoacoustic trace gas analysis and metrology[J]. Review of Scientific Instruments,2001, 72(4): 1937-1955.

[13] CHENG G, CAO Y, LIU K, et al. Photoacoustic measurement of ethane with near-infrared DFB diode laser[J]. Journal of Spectroscopy, 2018,9765806: 1-5.

[14] YIN X K, DONG L, WU H P, et al. Ppb-level H2S detection for SF6 decomposition based on a fiber-amplified telecommunication diode laser and a background-gas-induced high-Q photoacoustic cell[J]. Applied Physics Letters,2017, 111(3): 031109.

[15] YIN X K, WU H P, DONG L, et al. Ppb-level photoacoustic sensor system for saturation-free CO detection of SF6 decomposition by use of a 10 W fiber-amplified near-infrared diode laser[J]. Sensors and Actuators B: Chemical,2019,282: 567-573.

[16] YIN X K, DONG L, WU H P, et al. Highly sensitive SO_2 photoacoustic sensor for SF_6 decomposition detection using a compact mW-level diode-pumped solid-state laser emitting at 303 nm[J]. Optics Express,2017,25(26): 32581.

[17] ZHA S L, LIU K, ZHU G D, et al. Acetylene detection based on resonant high sensitive photoacoustic spectroscopy[J] Spectrosc. Spectr. Anal. ,2017,37: 2673-2678.

[18] MA Y F, QIAO S D, HE Y, et al. Highly sensitive acetylene detection based on multi-pass retro-reflection-cavity-enhanced photoacoustic spectroscopy and a fiber amplified diode laser[J]. Optics Express, 2019, 27(10): 14163.

[19] WANG Q, WANG Z, CHANG J, et al. Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing[J]. Optics Letters, 2017, 42(11): 2114.

[20] HAN L, CHEN X L, XIA H, et al. A novel photocoustic spectroscopy system for gas detection based on the multi-pass cell [J].Proceedings of the SPIE,2016,10025: 100250N-1-100250N-7.

[21] WANG Z, WANG Q, ZHANG W P, et al. Ultrasensitive photoacoustic detection in a high-finesse cavity with pound-drever-hall locking[J]. Optics Letters, 2019, 44(8): 1924.

[22] WILCKEN K, KAUPPINEN J. Optimization of a microphone for photoacoustic spectroscopy[J]. Applied Spectroscopy, 2003, 57(9): 1087-1092.

[23] KOSKINEN V, FONSEN J, ROTH K, et al. Progress in cantilever enhanced photoacoustic spectroscopy[J]. Vibrational Spectroscopy, 2008, 48(1): 16-21.

[24] LAURILA T, CATTANEO H, PYHNEN T, et al. Cantilever-based photoacoustic detection of carbon dioxide using a fiber-amplified diode laser[J]. Applied Physics B, 2006, 83(2): 285-288.

[25] DOSTL M, SUCHNEK J, VLEK V, et al. Cantilever-enhanced photoacoustic detection and infrared spectroscopy of trace species produced by biomass burning[J]. Energy & Fuels, 2018, 32(10): 10163-10168.

[26] MIKKONEN T, AMIOT C, AALTO A, et al. Broadband cantilever-enhanced photoacoustic spectroscopy in the mid-IR using a supercontinuum[J]. Optics Letters, 2018, 43(20): 5094.

[27] TOMBERG T, VAINIO M, HIETA T, et al. Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy[J]. Scientific Reports, 2018, 8: 1848.

[28] CHEN K, YU Z H, YU Q X, et al. Fast demodulated white-light interferometry-based fiber-optic Fabry-Perot cantilever microphone[J]. Optics Letters, 2018, 43(14): 3417-3420.

[29] CHEN K, ZHANG B, LIU S, et al. Parts-per-billion-level detection of hydrogen sulfide based on near-infrared all-optical photoacoustic spectroscopy[J]. Sensors and Actuators B: Chemical, 2019, 283: 1-5.

[30] LIU K, CAO Y, WANG G S, et al. A novel photoacoustic spectroscopy gas sensor using a low cost polyvinylidene fluoride film[J]. Sensors and Actuators B: Chemical, 2018, 277: 571-575.

[31] KOSTEREV A A, BAKHIRKIN Y A, CURL R F, et al. Quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 2002, 27(21): 1902-1904.

[32] DONG L, KOSTEREV A A, THOMAZY D, et al. QEPAS spectrophones: design, optimization, and performance[J]. Applied Physics B, 2010, 100(3): 627-635.

[33] DONG L, WU H P, ZHENG H D, et al. Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy[J].Opt. Lett.,2014,39: 2479-2482.

[34] LIU K, GUO X Y, YI H M, et al. Off-beam quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 2009, 34(10): 1594-1596.

[35] LI Z L, SHI C, REN W. Mid-infrared multimode fiber-coupled quantum cascade laser for off-beam quartz-enhanced photoacoustic detection[J]. Optics Letters, 2016, 41(17): 4095-4098.

[36] YI H M, LIU K, CHEN W D, et al. Application of a broadband blue laser diode to trace NO_2 detection using off-beam quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 2011, 36(4): 481-483.

[37] ZHENG H D, DONG L, YIN X K, et al. Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED[J]. Sensors and Actuators B: Chemical, 2015, 208: 173-179.

[38] RCK T, BIERL R, MATYSIK F. NO2 trace gas monitoring in air using off-beam quartz enhanced photoacoustic spectroscopy (QEPAS) and interference studies towards CO2, H2O and acoustic noise[J]. Sensors and Actuators B: Chemical, 2018, 255: 2462-2471.

[39] BTTGER S, KHRING M, WILLER U, et al. Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs[J]. Applied Physics B, 2013, 113(2): 227-232.

[40] LASSEN M, LAMARD L, FENG Y Y, et al. Off-axis quartz-enhanced photoacoustic spectroscopy using a pulsed nanosecond mid-infrared optical parametric oscillator[J]. Optics Letters, 2016, 41(17): 4118-4121.

[41] HU L E, ZHENG C T, ZHENG J, et al. Quartz tuning fork embedded off-beam quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 2019, 44(10): 2562-2565.

[42] BORRI S, PATIMISCO P, GALLI I, et al. Intracavity quartz-enhanced photoacoustic sensor[J]. Applied Physics Letters, 2014, 104(9): 143-162.

[43] HE Y, MA Y F, TONG Y, et al. HCN ppt-level detection based on a QEPAS sensor with amplified laser and a miniaturized 3D-printed photoacoustic detection channel[J]. Optics Express, 2018, 26(8): 9666-9675.

[44] PATIMISCO P, BORRI S, SAMPAOLO A, et al. A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser[J]. The Analyst, 2014, 139(9): 2079-2087.

[45] Borri S, Patimisco P, Sampaolo A, et al. Terahertz quartz enhanced photo-acoustic sensor[J]. Applied Physics Letters, 2013, 103(2): 579.

[46] SAMPAOLO A, PATIMISCO P, GIGLIO M, et al. Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy[J]. Sensors, 2016, 16(4): 439.

[47] SPAGNOLO V, PATIMISCO P, PENNETTA R, et al. THz quartz-enhanced photoacoustic sensor for H S trace gas detection[J]. Optics Express, 2015, 23(6): 7574-7582.

[48] PATIMISCO P, SCAMARCIO G, TITTEL F, et al. Quartz-enhanced photoacoustic spectroscopy: A review[J]. Sensors, 2014, 14(4): 6165-6206.

[49] PATIMISCO P, SAMPAOLO A, DONG L, et al. Recent advances in quartz enhanced photoacoustic sensing[J]. Applied Physics Reviews, 2018, 5(1): 011106.

[50] WU H P, YIN X K, DONG L, et al. Simultaneous dual-gas qepas detection based on a fundamental and overtone combined vibration of quartz tuning fork[J].Appl. Phys. Lett., 2017, 110: 121104-1-121104-4.

[51] LIU K, MEI J X, ZHANG W J, et al. Multi-resonator photoacoustic spectroscopy[J]. Sensors and Actuators B: Chemical,2017, 251: 632-636.

曹渊, 解颖超, 王瑞峰, 刘锟, 高晓明, 张为俊. 光声光谱气体传感技术研究进展[J]. 应用光学, 2019, 40(6): 1152. CAO Yuan, XIE Yingchao, WANG Ruifeng, LIU Kun, GAO Xiaoming, ZHANG Weijun. Recent advances of photoacoustic spectroscopy techniques for gases sensing[J]. Journal of Applied Optics, 2019, 40(6): 1152.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!