光学学报, 2016, 36 (12): 1223001, 网络出版: 2016-12-14   

基于二维光子晶体的偏振选择TE/TM波功率分配器

Polarization Selective Power Splitters for TE and TM Waves Based on Two-Dimensional Photonic Crystals
林密 1,2,*邱文标 1,2郗翔 1,2欧阳征标 1,2
作者单位
1 深圳大学电子科学与技术学院, 广东 深圳 518060
2 深圳市微纳光子信息技术重点实验室, 广东 深圳 518060
摘要
提出了基于二维光子晶体的具有偏振选择功能的横电(TE)和横磁(TM)波三等分功率分配器, 功分器结构构建于正方晶格的十字形光子晶体波导中。利用有限元法计算结构的性质, 利用Nelder-Mead算法进行了参数优化。结果表明, 在输入通道引入不同的偏振选择缺陷, 可使功分器具有偏振选择功能。对于TE功分器, TE波能够进入并在其中传输, TM波则不能进入; 对于TM功分器, 情况则刚好相反。在波导的十字交叉区域引入功率控制缺陷, 可使各输出端功率相等。合理选择参数, TE和TM功分器的总传输效率分别可达99.48%和95.53%。波长扫描发现两种功分器都可工作在相对较大的波长范围内。
Abstract
We propose polarization selective three-equal-power splitters for transverse-electric (TE) and transverse-magnetic (TM) waves based on two-dimensional photonic crystals. The structures are constructed by square-lattice cross-shaped photonic crystal waveguides. The finite element method and the Nelder-Mead optimization method are used to calculate the properties of the structures and obtain the optimized parameters, respectively. The results show that the power splitters are polarization selective when different polarization-selective defects are set in the input channels. For the TE power splitter, TE waves can enter the splitter and transmit in it, while TM waves cannot enter it; for the TM power splitter, the situation is just reversed. In addition, the power splitters can obtain the identical power output at various ports when power-control defects are set at the cross junction of the waveguides. With optimized parameters, the total transmission efficiency of the TE and TM power splitters can be up to 99.48% and 95.53%, respectively. Moreover, it is found by wavelength scanning of the structures that these two splitters can work in a relatively wide wavelength range while keeping good performance.
参考文献

[1] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20): 2059-2062.

[2] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486-2489.

[3] 王 勇, 张登国, 欧阳征标, 等. 四端口十字型二维磁性光子晶体环形器[J]. 光学学报, 2014, 34(10): 1023001.

    Wang Yong, Zhang Dengguo, Ouyang Zhengbiao, et al. Four-port cross-shaped circulator based on two-dimensional magneto-photonic crystals[J]. Acta Optica Sinica, 2014, 34(10): 1023001.

[4] 万 勇, 李长红, 云茂金, 等. 采用渐变圆弓形散射元实现光子晶体结构慢光效应[J]. 光学学报, 2013, 33(10): 1016003.

    Wan Yong, Li Changhong, Yun Maojin, et al. Realization of slow light effect for photonic crystal waveguide using graded eye-shaped scatterers[J]. Acta Optica Sinica, 2013, 33(10): 1016003.

[5] 汪静丽, 陈鹤鸣. 菱形空气孔的单一偏振单模太赫兹光子晶体光纤[J]. 光学学报, 2014, 34(9): 0906002.

    Wang Jingli, Chen Heming. Single-polarization single-mode rhombic-hole terahertz photonic crystal fibers[J]. Acta Optica Sinica, 2014, 34(9): 0906002.

[6] Jin X, Sesay M, Ouyang Z B, et al. Photonic-crystal structures with polarized-wave-guiding property and their applications in the mid and far infrared wave bands[J]. Optics Express, 2013, 21(21): 25592-25606.

[7] Park I, Lee H S, Kim H J, et al. Photonic crystal power-splitter based on directional coupling[J]. Optics Express, 2004, 12(15): 3599-3604.

[8] Jia W, Deng J, Wu H, et al. Design and fabrication of high-efficiency photonic crystal power beam splitters[J]. Optics Letters, 2011, 36(20): 4077-4079.

[9] Zhang M, Malureanu R, Krüger A C, et al. 1×3 beam splitter for TE polarization based on self-imaging phenomena in photonic crystal waveguides[J]. Optics Express, 2010, 18(14): 14944-14949.

[10] Djavid M, Ghaffari A, Monifi F, et al. Photonic crystal power dividers using L-shaped bend based on ring resonators[J]. Journal of the Optical Society of America B, 2008, 25(8): 1231-1235.

[11] Liu C Y. Fabrication and optical characteristics of silicon-based two-dimensional wavelength division multiplexing splitter with photonic crystal directional waveguide couplers[J]. Physics Letters A, 2011, 375(28): 2754-2758.

[12] Tee D C, Tamchek N, Shee Y G, et al. Numerical investigation on cascaded 1×3 photonic crystal power splitter based on asymmetric and symmetric 1×2 photonic crystal splitters designed with flexible structural defects[J]. Optics Express, 2014, 22(20): 24241-24255.

[13] Loferski J J. Infrared optical properties of single crystals of tellurium[J]. Physical Review, 1954, 93(4): 707-716.

[14] Shi P, Huang K, Kang X, et al. Creation of large band gap with anisotropic annular photonic crystal slab structure[J]. Optics Express, 2010, 18(5): 5221-5228.

[15] Bass M. Handbook of optics[M]. New York: McGraw-Hill Press, 1994.

[16] Joannopoulos J D, Johnson S G, Winn J N, et al. Photonic crystals: molding the flow of light[M]. 2nd edition. Princeton: Princeton University Press, 2008.

[17] Chutinan A, John S. Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations[J]. Physical Review E, 2005, 71(2): 026605.

林密, 邱文标, 郗翔, 欧阳征标. 基于二维光子晶体的偏振选择TE/TM波功率分配器[J]. 光学学报, 2016, 36(12): 1223001. Lin Mi, Qiu Wenbiao, Xi Xiang, Ouyang Zhengbiao. Polarization Selective Power Splitters for TE and TM Waves Based on Two-Dimensional Photonic Crystals[J]. Acta Optica Sinica, 2016, 36(12): 1223001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!