中国激光, 2017, 44 (8): 0803003, 网络出版: 2017-09-13   

飞秒激光烧蚀氯金酸水溶液制备金纳米粒子 下载: 881次

Preparation of Gold Nanoparticles by Femtosecond Laser Ablation in Chloroauric Acid Trihydrate Aqueous Solution
作者单位
1 安徽理工大学土木建筑学院, 安徽 淮南 232001
2 安徽师范大学原子与分子物理研究所, 安徽 芜湖 241000
3 安徽理工大学材料科学与工程学院, 安徽 淮南 232001
引用该论文

杜传梅, 吕良宏, 张明旭. 飞秒激光烧蚀氯金酸水溶液制备金纳米粒子[J]. 中国激光, 2017, 44(8): 0803003.

Du Chuanmei, Lü Lianghong, Zhang Mingxu. Preparation of Gold Nanoparticles by Femtosecond Laser Ablation in Chloroauric Acid Trihydrate Aqueous Solution[J]. Chinese Journal of Lasers, 2017, 44(8): 0803003.

参考文献

[1] Jain P K, Huang X H. El-Sayed I H, et al. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine[J]. Accounts of Chemical Research, 2008, 41: 1578-1586.

[2] Wang A, Sun W, Wang C. et al. Gold nanoparticles modified by new conjugated S=C=N terminal and its biological imaging application[J]. Dyes and Pigments, 2017, 141: 13-20.

[3] de Mrinmoy B, Ghosh P S, Rotello V M. Applications of nanoparticles in biology[J]. Advanced Materials, 2008, 20(22): 4225-4241.

[4] 金静, 朱守俊, 宋玉彬, 等. 银/碳点复合纳米粒子的构筑及其SERS研究[J]. 光谱学与光谱分析, 2016, 36(10): 291-292.

    Jin Jing, Zhu Shoujun, Song Yubin, et al. Facile synthesis of Ag/CDs composite using CDs as reductant for SERS[J]. Spectroscopy and Spectral Analysis, 2016, 36(10): 291-292.

[5] Zoladek S, Rutkowska I A, Blicharska M. Evaluation of reduced-graphene-oxide-supported gold nanoparticles as catalytic system for electroreduction of oxygen in alkaline electrolyte[J]. Electrochimica Acta, 2017, 233: 113-122.

[6] Okada T, Suehiro J. Synthesis of nano-structured materials by laser-ablation and their application to sensors[J]. Applied Surface Science, 2007, 253(19): 7840-7847.

[7] Khodaveisi J, Shabani A M, Dadfarnia S. et al. A novel sensor for determination of naproxen based on change in localized surface plasmon peak of functionalized gold nanoparticles[J]. Spectrochimica Acta Part A, 2017, 179: 11-16.

[8] Kneipp J, Li X T, Sherwood M. et al. Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing[J]. Analytical Chemistry, 2008, 80(11): 4247-4251.

[9] 李明, 李凯伟, 代方, 等. 基于金纳米棒放大的高灵敏度纳米光纤生化传感器[J]. 光学学报, 2015, 35(12): 1206001.

    Li Ming, Li Kaiwei, Dai Fang, et al. Highly sensitive optical nanofiber sensor based on gold nanorod amplification[J]. Acta Optica Sinica, 2015, 35(12): 1206001.

[10] Nirmala J G, Akila S, Narendhirakannan R T, et al. Vitis vinifera peel polyphenols stabilized gold nanoparticles induce cytotoxicity and apoptotic cell death in A431 skin cancer cell lines[J]. Advanced Powder Technology, 2017, 28(4): 1170-1184.

[11] Wang X Y, Zou M J, Xu X. et al. Determination of human urinary kanamycin in one step using urea-enhanced surface plasmon resonance light-scattering of gold nanoparticles[J]. Analytical and Bioanalytical Chemistry, 2009, 395(7): 2397-2403.

[12] Guevel X L. Recent advances on the synthesis of metal quantum nanoclusters and their application for bioimaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(3): 6801312.

[13] Jiang Y Q, Horimoto N N, Imura K. et al. Bioimaging with two-photon-induced luminescence from triangular nanoplates and nanoparticle aggregates of gold[J]. Advanced Materials, 2009, 21(22): 2309-2313.

[14] Wang M H, Hu J W, Li Y J. et al. Au nanoparticle monolayers: preparation, structural conversion and their surface-enhanced Raman scattering effects[J]. Nanotechnology, 2010, 21(14): 145608.

[15] 张洁, 陈俞霖, 朱永. 碳纳米管和金属纳米粒子复合结构的拉曼光谱特性研究[J]. 中国激光, 2012, 39(11): 1115001.

    Zhang Jie, Chen Yulin, Zhu Yong. Raman spectrum of carbon nanotubes coated by Au nano particles film[J]. Chinese J Lasers, 2012, 39(11): 1115001.

[16] Hvolbæk B. Janssens T V W, Clausen B S, et al. Catalytic activity of Au nanoparticles[J]. Nanotoday, 2007, 2(4): 14-18.

[17] Xu X H N, Huang S, Brownlow W, et al. Size and temperature dependence of surface plasmon absorption of gold nanoparticles induced by tris(2,2'-bipyridine) ruthenium(II)[J]. The Journal of Physical Chemistry B, 2004, 108(40): 15543-15551.

[18] Kelly K L, Coronado E, Zhao L L. et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment[J]. The Journal of Physical Chemistry B, 2003, 107(3): 668-677.

[19] Link S. El-Sayed M A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles[J]. The Journal of Physical Chemistry B, 1999, 103(21): 4212-4217.

[20] Raschke G, Kowarik S, Franzl T. et al. Biomolecular recognition based on single gold nanoparticle light scattering[J]. Nano Letters, 2003, 3(7): 935-938.

[21] Jana N R, Gearheart L, Murphy C J. Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles[J]. Chemistry of Materials, 2001, 13(7): 2313-2322.

[22] Sau T K, Murphy C J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution[J]. Journal of the American Chemical Society, 2004, 126(28): 8648-8649.

[23] 周树清, 马国佳, 王春华, 等. 飞秒激光诱导钛合金表面形貌变化的规律[J]. 中国激光, 2016, 43(9): 0902003.

    Zhou Shuqing, Ma Guojia, Wang Chunhua, et al. Rule of morphology variation of Ti alloy surface induced by femtosecond lasers[J]. Chinese J Lasers, 2016, 43(9): 0902003.

[24] 杜玲艳, 吴志明, 胡征, 等. 飞秒激光制备掺杂黑硅及其应用进展[J]. 激光与光电子学进展, 2015, 52(10): 100005.

    Du Lingyan, Wu Zhiming, Hu Zheng, et al. Progress in fabrication and application of doping black silicon by femtosecond laser[J]. Laser & Optoelectronics Progress, 2015, 52(10): 100005.

[25] Sylvestre J P, Poulin S, Kabashin A V. et al. Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media[J]. The Journal of Physical Chemistry B, 2004, 108(43): 16864-16869.

[26] Mafune F, Kohno J, Takeda Y. et al. Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control[J]. The Journal of Physical Chemistry B, 2002, 106(31): 7575-7577.

[27] Sengupta S, Abedin K M, et al. Fabrication of gold nanoparticles in water by laser ablation technique and their characterization[J]. Applied Physics A, 2011, 105(2): 487-495.

[28] Kabashin A V, Meunier M. Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water[J]. Journal of Applied Physics, 2003, 94(12): 7941-7943.

[29] Sylvestre J P, Kabashin A V, Sacher E. et al. Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution[J]. Applied Physics A, 2005, 80(4): 753-758.

[30] Takami A, Kurita H, Koda S. Laser-induced size reduction of noble metal particles[J]. The Journal of Physical Chemistry B, 1999, 103(8): 1226-1232.

[31] Nakamura T, Mochidzuki Y, Takasaki K. et al. Fabrication of gold nanoparticles in intense optical field by femtosecond laser irradiation of aqueous solution[J]. Journal of Materials Research, 2008, 23(4): 968-974.

[32] Mafune F, Kohno J Y, Takeda Y. et al. Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant[J]. The Journal of Physical Chemistry B, 2001, 105(22): 5114-5120.

[33] Sobhan M A, Withford M J, Goldys E M. Enhanced stability of gold colloids produced by femtosecond laser synthesis in aqueous solution of CTAB[J]. Langmuir, 2012, 26(5): 3156-3159.

[34] Sylvestre J P, Kabashin A V, Sacher E. et al. Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins[J]. Journal of the American Chemical Society, 2004, 126(23): 7176-7177.

杜传梅, 吕良宏, 张明旭. 飞秒激光烧蚀氯金酸水溶液制备金纳米粒子[J]. 中国激光, 2017, 44(8): 0803003. Du Chuanmei, Lü Lianghong, Zhang Mingxu. Preparation of Gold Nanoparticles by Femtosecond Laser Ablation in Chloroauric Acid Trihydrate Aqueous Solution[J]. Chinese Journal of Lasers, 2017, 44(8): 0803003.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!