光子学报, 2013, 42 (6): 710, 网络出版: 2013-06-14  

生物细胞亚显微结构对光散射特性的影响

Sub-microstructures′ Influences on Cell′s Scattering Prosperities
作者单位
脉冲功率激光技术国家重点实验室(电子工程学院), 电子制约技术安徽省重点实验室, 合肥 230037
摘要
构建细胞模型、“细胞基质”模型以及“细胞基质-细胞核”模型等3个模型, 分别表征不同层次细胞结构, 采用时域有限差分方法进行仿真计算, 分别比较了3个模型的远场雷达散射截面在5个散射区的数值差异, 分析了细胞器、细胞核和细胞基质等细胞亚显微结构对细胞电磁散射特性的影响.研究结果表明,生物细胞整体电磁散射特性主要由其细胞基质决定, 细胞核的存在显著增强了细胞在20°≤θ≤40°和150°≤θ≤180°两个散射区的散射能力, 随机分布的细胞器增强了细胞的侧向散射, 削弱了细胞核在上述两个散射区的散射效果, 使细胞散射波分布趋于均匀.
Abstract
A cell model, a cellularstroma model and a “cellularstroma & nuclear” model are presented, which demonstrate three types of biological cells, respectively. By using a FDTD method, models′ RCS in the far-field are compared, and influences of cell′s sub-microstructures, including organelles, nucleolus and cellularstroma on its scattering properties are researched. The results show that cells′ scattering properties are mainly determined by cellularstroma. Light scattering from cells and propagating in two directions of 20°≤θ≤40° and 150°≤θ≤180° are increased by nucleus but decreased by organelles, which distribute randomly, that making scattering light intensity in all direction more uniform.
参考文献

[1] MOURANT J R, FREYER J P, HIELSCHER A H, et al. Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics[J]. Applied Optics, 1998, 37(7): 3586-3593.

[2] MIE G. Beitrage zur optik truber medien speziel kolloidoler metallosungen[J]. Annalen der Physik, 1908, 25(4): 377-445.

[3] MOURANT J R, JOHNSON T M, FREYER J P. Characterizing mammalian cells and cell phantoms by polarized backscattering fiber-optic measurements[J]. Applied Optics, 2001, 40(28): 5114-5123.

[4] 兰天鸽, 熊伟, 方勇华, 等. 应用被动傅里叶变换红外光谱技术探测生物气溶胶研究[J]. 光学学报, 2010, 30(6): 1656-1661.

    LAN Tian-ge, XIONG Wei, FANG Yong-hua, et al. Study on passive detection of biological aerosol with fourier-transform infrared spectroscopic technique[J]. Acta Optic Sinica, 2010, 30(6): 1656-1661.

[5] BRUNSTING A, MULLANEY P F. Light scattering from coated spheres: model for biological cells[J]. Applied Optics, 1972, 11(3): 675-680.

[6] SLOOT P M A, FIGDOR C G. Elastic light scattering from nucleated blood cells: rapid numerical analysis[J]. Applied Optics, 1986, 25(19): 3559-3565.

[7] 冯春霞, 黄立华, 周光超, 等. 单分散生物气溶胶光散射特性的计算与分析[J]. 中国激光, 2010, 37(10): 2593-2598.

    FENG Chun-xia, HUANG Li-hua, ZHOU Guang-chao, et al. Computation and analysis of light scattering by monodisperse biological aerosols[J]. Chinese Journal of Lasers, 2010, 37(10): 2593-2598.

[8] 周德庆. 微生物学教程[M]. 北京: 高等教育出版社, 2004.

[9] MOURANT J R, JOHNSON T M, FREYER J P. Characterizing mammalian cells and cell phantoms by polarized backscattering fiber-optic measurements[J]. Applied Optics, 2001, 40(28): 5114-5123.

[10] LIU Cai-gen, CAPJACK C, ROZMUS W. 3-D simulation of light scattering from biological cells and cell differentiation[J]. Journal of Biomedical Optics, 2005, 10(1): 014007-1-014007-10.

[11] 葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 西安: 西安电子科技大学出版社, 2004.

[12] KOLOKOLOVA L, GUSTAFSON Bo s. Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2001, 70(5): 611-625.

[13] BOHREN C F, HUFFMAN D R. Absorption and scattering of light by small particles[M]. New York: John Wiley & Sons, Inc., 1983: 228-267.

孙杜娟, 胡以华, 王勇, 李乐, 李磊. 生物细胞亚显微结构对光散射特性的影响[J]. 光子学报, 2013, 42(6): 710. SUN Du-juan, HU Yi-hua, WANG Yong, LI Le, LI Lei. Sub-microstructures′ Influences on Cell′s Scattering Prosperities[J]. ACTA PHOTONICA SINICA, 2013, 42(6): 710.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!