量子电子学报, 2017, 34 (4): 385, 网络出版: 2017-08-09  

金属尖端角度对表面增强拉曼散射的影响

Influence of metal tip angle on surface enhanced Raman scattering
作者单位
中国科学技术大学光学与光学工程系, 安徽省光电子科学与技术重点实验室, 安徽 合肥 230026
引用该论文

崔辰静, 李宽国, 戴艳秋, 鲁拥华, 王沛. 金属尖端角度对表面增强拉曼散射的影响[J]. 量子电子学报, 2017, 34(4): 385.

CUI Chenjing, LI Kuanguo, DAI Yanqiu, LU Yonghua, WANG Pei. Influence of metal tip angle on surface enhanced Raman scattering[J]. Chinese Journal of Quantum Electronics, 2017, 34(4): 385.

参考文献

[1] Campion A, Kambhampati P. Surface-enhanced Raman scattering[J]. Chemical Socirty Review , 1998, 27(4): 241-249.

[2] Chang R, Furtak T E. Surface Enhanced Raman Scattering[M]. Plenum Press, 1982.

[3] Stranahan S M, Willets K A. Super-resolution optical imaging of single-molecule SERS hot spots[J]. Nano Letters , 2010, 10(9): 3777-3784.

[4] Le Ru E C, Meyer M, Blackie E, et al . Advanced aspects of electromagnetic SERS enhancement factors at a hot spot[J]. Journal of Raman Spectroscopy , 2008, 39(9): 1127-1134.

[5] Le Ru E C, Etchegoin P G, Meyer M. Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection[J]. Journal of Chemical Physics , 2006, 125(20): 204701.

[6] Kleinman S L, Frontiera R R, Henry A I, et al . Creating, characterizing, and controlling chemistry with SERS hot spots[J]. Physical Chemistry Chemical Physics , 2013, 15(1): 21-36.

[7] Gunnarsson L, et al . Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering[J]. Applied Physics Letters , 2001, 78(6): 802-804.

[8] Fromm D P, Sundaramurthy A, Schuck P J, et al . Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible[J]. Nano Letters , 2004, 4(5): 957-961.

[9] Wang X, Li M, et al . Probing the location of hot spots by surface-enhanced Raman spectriscopy: Toward uniform substrates[J]. ACS Nano , 2013, 8(1): 528-536.

[10] Wen X L, Xi Z, Jiao X J, et al . Plasmonic coupling effect in Ag nanocap-nanohole pairs for surface-enhance Raman scattering[J]. Plasmonics , 2013, 8(2): 225-231.

[11] Wen X, Yi M, et al . Tunable plasmonic coupling between silver nano-cubes and silver nano-hole arrays[J]. Nanotechnology , 2011, 22(8): 085203.

[12] Li Kuangguo, Jiang Kang, et al . Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film[J]. Nanotechnology , 2016, 27(16): 165401.

[13] Liu Chi, Guo Fuhua, Luo Boliang, et al . Imaging simulation of maskless lithography using a DMD[C]. Proc. of SPIE , 2005, 5645(8): 307-314.

[14] Dudley D, Duncan W, Slaughter J. Emerging digital micromirror device (DMD) application[C]. Proc. of SPIE , 2003, 5645(14): 307-314.

[15] Sun Yudie, Liu Honglin, et al . Unravelling the relationship between Raman enhancement and photocatelytic activity on single anisotropic Au microplates[J]. Chemistry , 2014, 20(33): 10414-10424.

崔辰静, 李宽国, 戴艳秋, 鲁拥华, 王沛. 金属尖端角度对表面增强拉曼散射的影响[J]. 量子电子学报, 2017, 34(4): 385. CUI Chenjing, LI Kuanguo, DAI Yanqiu, LU Yonghua, WANG Pei. Influence of metal tip angle on surface enhanced Raman scattering[J]. Chinese Journal of Quantum Electronics, 2017, 34(4): 385.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!