量子电子学报, 2017, 34 (4): 385, 网络出版: 2017-08-09  

金属尖端角度对表面增强拉曼散射的影响

Influence of metal tip angle on surface enhanced Raman scattering
作者单位
中国科学技术大学光学与光学工程系, 安徽省光电子科学与技术重点实验室, 安徽 合肥 230026
摘要
金属尖端对于表面拉曼散射有增强效果,尖端的角度对表面增强拉曼散射(SERS)的 影响很少有定量报道。为研究尖端角度大小与SERS的关系,利用数字微镜设备(DMD)进行无掩 模投影光刻制备了4组不同尖端角度的样品,分别为30°、60°、90°、120°。测量了样品对 应的SERS谱,研究了金属尖端角度对SERS的影响。结果表明: 锐角具有更好的表面增强拉曼散射效果,角度越小增强效果越明显;钝角情况下, SERS对角度 依赖的敏感度下降。
Abstract
Surface Raman scattering can be enhanced by metal tip. There are few quantitative reports about the influence of tip angle on surface enhanced Raman scattering (SERS). In order to investigate the relationship between the tip angle and SERS, four kinds of samples with different tip angles, including 30°, 60°, 90°, 120° are fabricated by maskless projective lithography using digital micro-mirror device (DMD). The corresponding SERS spectra of the samples are measured, and influence of metal tip angle on SERS is investigated. Results show that acute angles have a better SERS effect, and the smaller the angle is, the more obvious the effect will be. Dependence on angle of SERS decreases in the case of obtuse angle.
参考文献

[1] Campion A, Kambhampati P. Surface-enhanced Raman scattering[J]. Chemical Socirty Review , 1998, 27(4): 241-249.

[2] Chang R, Furtak T E. Surface Enhanced Raman Scattering[M]. Plenum Press, 1982.

[3] Stranahan S M, Willets K A. Super-resolution optical imaging of single-molecule SERS hot spots[J]. Nano Letters , 2010, 10(9): 3777-3784.

[4] Le Ru E C, Meyer M, Blackie E, et al . Advanced aspects of electromagnetic SERS enhancement factors at a hot spot[J]. Journal of Raman Spectroscopy , 2008, 39(9): 1127-1134.

[5] Le Ru E C, Etchegoin P G, Meyer M. Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection[J]. Journal of Chemical Physics , 2006, 125(20): 204701.

[6] Kleinman S L, Frontiera R R, Henry A I, et al . Creating, characterizing, and controlling chemistry with SERS hot spots[J]. Physical Chemistry Chemical Physics , 2013, 15(1): 21-36.

[7] Gunnarsson L, et al . Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering[J]. Applied Physics Letters , 2001, 78(6): 802-804.

[8] Fromm D P, Sundaramurthy A, Schuck P J, et al . Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible[J]. Nano Letters , 2004, 4(5): 957-961.

[9] Wang X, Li M, et al . Probing the location of hot spots by surface-enhanced Raman spectriscopy: Toward uniform substrates[J]. ACS Nano , 2013, 8(1): 528-536.

[10] Wen X L, Xi Z, Jiao X J, et al . Plasmonic coupling effect in Ag nanocap-nanohole pairs for surface-enhance Raman scattering[J]. Plasmonics , 2013, 8(2): 225-231.

[11] Wen X, Yi M, et al . Tunable plasmonic coupling between silver nano-cubes and silver nano-hole arrays[J]. Nanotechnology , 2011, 22(8): 085203.

[12] Li Kuangguo, Jiang Kang, et al . Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film[J]. Nanotechnology , 2016, 27(16): 165401.

[13] Liu Chi, Guo Fuhua, Luo Boliang, et al . Imaging simulation of maskless lithography using a DMD[C]. Proc. of SPIE , 2005, 5645(8): 307-314.

[14] Dudley D, Duncan W, Slaughter J. Emerging digital micromirror device (DMD) application[C]. Proc. of SPIE , 2003, 5645(14): 307-314.

[15] Sun Yudie, Liu Honglin, et al . Unravelling the relationship between Raman enhancement and photocatelytic activity on single anisotropic Au microplates[J]. Chemistry , 2014, 20(33): 10414-10424.

崔辰静, 李宽国, 戴艳秋, 鲁拥华, 王沛. 金属尖端角度对表面增强拉曼散射的影响[J]. 量子电子学报, 2017, 34(4): 385. CUI Chenjing, LI Kuanguo, DAI Yanqiu, LU Yonghua, WANG Pei. Influence of metal tip angle on surface enhanced Raman scattering[J]. Chinese Journal of Quantum Electronics, 2017, 34(4): 385.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!