中国激光, 2013, 40 (6): 0601002, 网络出版: 2013-05-30   

2.0 μm掺铥超短脉冲光纤激光器研究进展及展望 下载: 1304次

Progress and Prospect on Ultrafast Tm-Doped Fiber Lasers at 2 μm Wavelength
作者单位
北京工业大学激光工程研究院国家产学研激光技术中心, 北京 100124
引用该论文

王璞, 刘江. 2.0 μm掺铥超短脉冲光纤激光器研究进展及展望[J]. 中国激光, 2013, 40(6): 0601002.

Wang Pu, Liu Jiang. Progress and Prospect on Ultrafast Tm-Doped Fiber Lasers at 2 μm Wavelength[J]. Chinese Journal of Lasers, 2013, 40(6): 0601002.

参考文献

[1] M. Eckerle, C. Kieleck, J. widerski et al.. Actively Q-switched and mode-locked Tm3+-doped silicate 2 μm fiber laser for supercontinuum generation in fluoride fiber[J]. Opt. Lett., 2012, 37(4): 512~514

[2] D. Buccoliero, H. Steffensen, O. Bang et al.. Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber[J]. Appl. Phys. Lett., 2010, 97(6): 061106

[3] C. R. Phillips, Carsten Langrock, J. S. Pelc et al.. Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system[J]. Opt. Lett., 2011, 36(19): 3912~3914

[4] O. P. Kulkarni, V. V. Alexander, M. Kumar et al.. Supercontinuum generation from ~1.9 to 4.5 μm in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier[J]. J. Opt. Soc. Am. B, 2011, 28(10): 2486~2498

[5] Y. Tang, C. Huang, S. Wang et al.. High-power narrow-bandwidth thulium fiber laser with an all-fiber cavity[J]. Opt. Express, 2012, 20(16):17539~17544

[6] Z. Yunjun, Y. Baoquan, J. Youlun et al.. LD-cladding-pumped 50 pm linewidth Tm3+-doped silica fiber laser[J]. Opt. Express, 2008, 16(11): 7715~7719

[7] F. Wang, D. Shen, D. Fan et al.. Spectrum narrowing of high power Tmfiber laser using a volume Bragg grating[J]. Opt. Express, 2010, 18(9): 8937~8941

[8] S. D. Jackson, Terence A. King. High-power diode-cladding-pumped Tm-doped silica fiber laser[J]. Opt. Lett., 2008, 23(18): 1462~1464

[9] P. F. Moulton, G. A. Rines, E. Slobodtchikov et al.. Tm-doped fiber lasers: fundamentals and power scaling[J]. IEEE J. Sel. Top. Quantum Electron., 2009, 15(1): 85~92

[10] Thomas Ehrenreich, Ryan Leveille, Imtiaz Majid et al.. 1-kW, all-glass Tm fiber laser[C]. SPIE, 2010, 7580: 16

[11] 刘江,王璞. 高功率窄线宽全光纤结构掺铥连续光纤激光器[J]. 中国激光, 2013, 40(1): 0102001

    Liu Jiang,Wang Pu. High-power narrow-bandwidth continuous wave thulium-doped all-fiber laser[J]. Chinese J. Lasers, 2013, 40(1): 0102001

[12] G. D. Goodno, L. D. Book, J. E. Rothenberg. Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier[J]. Opt. Lett., 2009, 34(8): 1204~1206

[13] P. Hübner, C. Kieleck, Stuart D. Jackson et al.. High-power actively mode-locked sub-nanosecond Tm3+-doped silica fiber laser[J]. Opt. Lett., 2011, 36(13): 2483~2485

[14] L. E. Nelson, E. P. Ippen, H. A. Haus. Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser[J]. Appl. Phys. Lett., 1995, 67(1): 19~21

[15] W. Renard, G. Canat, P. Bourdon. 26 nJ picosecond solitons from thulium-doped single-mode master oscillator power fiber amplifier[J]. Opt. Lett., 2012, 37(3): 377~379

[16] M. Engelbrecht, F. Haxsen, A. Ruehl et al.. Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3 nJ[J]. Opt. Lett., 2008, 33(7): 690~692

[17] F. Haxsen, A. Ruehl, M. Engelbrecht et al.. Stretched-pulse operation of a thulium-doped fiber laser[J]. Opt. Express, 2008, 16(25): 20471~20476

[18] F. Haxsen, D. Wandt, U. Morgner et al.. Pulse characteristics of a passively mode-locked thulium fiber laser with positive and negative cavity dispersion[J]. Opt. Express, 2010, 18(18): 18981~18988

[19] F. Haxsen, D. Wandt, U. Morgner et al.. Pulse energy of 151 nJ from ultrafast thulium-doped chirped-pulse fiber amplifier[J]. Opt. Lett., 2010, 35(17): 2991~2993

[20] F. Haxsen, D. Wandt, U. Morgner et al.. Monotonically chirped pulse evolution in an ultrashort pulse thulium-doped fiber laser[J]. Opt. Lett., 2012, 37(6): 1014~1016

[21] A. Wienke, F. Haxsen, D. Wandt et al.. Ultrafast, stretched-pulse thulium-doped fiber laser with a fiber-based dispersion management[J]. Opt. Lett., 2012, 37(13): 2466~2468

[22] Q. Wang, T. Chen, B. Zhang et al.. All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes[J]. Opt. Lett., 2011, 36(19): 3750~3752

[23] Q. Wang, J. Geng, T. Luo et al.. Mode-locked 2 μm laser with highly thulium-doped silicate fiber[J]. Opt. Lett., 2009, 34(23): 3616~3618

[24] Q. Wang, J. Geng, Z. Jiang et al.. Mode-locked Tm-Ho-codoped fiber laser at 2.06 μm[J]. IEEE Photon. Technol. Lett., 2011, 23(11): 682~684

[25] S. Kivist, T. Hakulinen, M. Guina et al.. Tunable Raman soliton source using mode-locked Tm-Ho fiber laser[J]. IEEE Photon. Technol. Lett., 2007, 19(12): 934~936

[26] S. Kivisto, O.G. Okhotnikov. 600-fs mode-locked Tm-Ho-doped fiber laser synchronized to optical clock with optically driven semiconductor saturable absorber[J]. IEEE Photon. Technol. Lett., 2011, 23(8): 477~479

[27] R. Gumenyuk, I. Vartiainen, H. Tuovinen et al.. Dissipative dispersion-managed soliton 2 μm thulium/holmium fiber laser[J]. Opt. Lett., 2011, 36(5): 609~611

[28] R. Gumenyuk, M. S. Gaponenko, K. V. Yumashev et al.. Vector soliton bunching in thulium-holmium fiber laser mode locked with PbS quantum-dot-doped glass absorber[J]. IEEE J. Quantum Electron., 2012, 48(7): 903~907

[29] 刘江,曹镱,王璞. 全光纤结构被动锁模2 μm掺铥光纤激光器[J]. 中国激光,2011, 38(9): 0905007-7

[30] 刘江,王璞. 高功率被动锁模2.0 μm掺铥飞秒脉冲光纤激光器[J]. 中国激光, 2012, 39(9): 0902001

    Liu Jiang, Wang Pu. High-power passively mode-locked thulium-doped femtosecond fiber laser at 2.0 μm[J]. Chinese J. Lasers, 2012, 39(9): 0902001

[31] J. Liu, P. Wang. High-energy near transform-limited pulses from an ultrafast thulium-doped all-fiber MOPA[J]. IEEE Photon. Technol. Lett., 2012, 24(16): 1384~1386

[32] 刘江,徐佳,王潜 等. 高能量全光纤结构被动锁模2.0 μm掺铥超短脉冲光纤激光器[J]. 中国激光, 2012, 39(6): 0602009

    Liu Jiang, Xu Jia, Wang Qian et al.. High-pulse-energy passively mode-locked 2.0 μm thulium-doped ultrafast all-fiber laser[J]. Chinese J. Lasers, 2012, 39(6): 0602009

[33] 刘江,王璞. 瓦级输出全光纤结构2.0 μm掺铥皮秒脉冲光纤激光器[J]. 中国激光, 2012, 39(8): 0802004

    Liu Jiang, Wang Pu. 2 μm thulium-doped ultrafast all-fiber laser with watts-level average output power[J]. Chinese J. Lasers, 2012, 39(8): 0802004

[34] 刘江,王潜,王璞. 20 W全光纤结构掺铥皮秒脉冲光纤激光器[J]. 中国激光, 2012, 39(6): 0610001-5

[35] M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach et al.. Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber[J]. Opt. Lett., 2008, 33(12): 1336~1338

[36] K. Kieu, F. W. Wise. Soliton thulium-doped fiber laser with carbon nanotube saturable absorber[J]. IEEE Photon. Technol. Lett., 2009, 21(3): 128~130

[37] S. Kivist, T. Hakulinen, A. Kaskela et al.. Carbon nanotube films for ultrafast broadband technology[J]. Opt. Express, 2009, 17(4): 2358~2363

[38] Q. Fang, K, Kieu, N. Peyghambarian. An all-fiber 2 μm wavelength-tunable mode-locked laser[J]. Photon. Technol. Lett., 2010, 22(15): 1656~1658

[39] M. Zhang, E. J. R. Kelleher, F. Torrisi et al.. Tm-doped fiber laser mode-locked by graphene-polymer composite[J]. Opt. Express, 2012, 20(22): 25077~25084

[40] D. I. M. Zen, N. Saidin, S. S. A. Damanhuri et al.. Mode-locked thulium-bismuth codoped fiber laser using graphene saturable absorber in ring cavity[J]. Appl. Opt., 2013, 52(6): 1226~1229

[41] 刘江, 吴思达,徐佳 等. 基于氧化石墨烯锁模的2 μm掺铥超短脉冲光纤激光器[J]. 中国激光, 2012, 39(3): 0310001-7

[42] J. Liu, S. Wu, J. Xu et al.. Mode-locked 2 μm thulium-doped fiber laser with graphene oxide saturable absorber[C]. CLEO: QELS-Fundamental Science, 2012. JW2A. 76.

[43] M. Jung, J. Koo, P. Debnath et al.. A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field[J]. Appl. Phys. Express, 2012, 5: 112702~112704

[44] M. A. Chernysheva, A. A. Krylov, P. G. Kryukov et al.. Nonlinear amplifying loop-mirror-based mode-locked thulium-doped fiber laser[J]. IEEE Photon. Technol. Lett., 2012, 24(14): 1254~1256

[45] M. A. Chernysheva, A. A. Krylov, P. G. Kryukov et al.. Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber[J]. Opt. Express, 2012, 20(26), B124~B130

[46] C. Rudy, M. Digonnet, R. Byer et al.. Thulium-doped germanosilicate mode-locked fiber lasers[C]. Fiber Laser Applications, 2012. FTh4A.4

[47] J. Liu, Q. Wang, P. Wang. High average power picosecond pulse generation from a thulium-doped all-fiber MOPA system[J]. Opt. Express, 2012, 20(20): 22442~22447

[48] R. A. Sims, P. Kadwani, A. S. L. Shah et al.. 1 μJ, sub-500 fs chirped pulse amplification in a Tm-doped fiber system[J]. Opt. Lett., 2013, 38(2): 121~123

[49] L. M. Yang, P. Wan, V. Protopopov et al.. 2 μm femtosecond fiber laser at low repetition rate and high pulse energy[J]. Opt. Express, 2012, 20(5): 5683~5688

[50] P. Wan, L. M. Yang, J. Liu. High pulse energy 2 μm femtosecond fiber laser[J]. Opt. Express, 2013, 21(2): 1798~1803

[51] P. Wan, L. M. Yang, J. Liu. 156 micro-J ultrafast thulium-doped fiber laser[C]. SPIE, 2013, 8601: 860138

[52] J. Jiang, C. Mohr, J. Bethge et al.. 500 MHz, 58 fs highly coherent Tm fiber soliton laser[C]. CLEO: Applications and Technology, 2012. CTh5D.7

[53] 刘江,王璞. 850 MHz高重复频率、窄线宽被动锁模皮秒脉冲光纤激光器[J]. 中国激光, 2011, 38(9): 0908009-6

[54] J. Liu, J. Xu, P. Wang. High repetition-rate narrow bandwidth SESAM mode-locked Yb-doped fiber lasers[J]. IEEE Photon. Technol. Lett., 2012, 24(7): 539~541

[55] Q. L. Bao, H. Zhang, Y. Wang et al.. Atomic layer graphene as saturable absorber for ultrafast pulsed laser[J]. Advanced Functional Materials, 2009, 19(19): 3077~3083

[56] H. Zhang, D. Y. Tang, Z. M. Zhao et al.. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene[J]. Opt. Express, 2009, 17(20): 17630~17635

[57] Z. Sun, T. Hasan, F. Bonaccorso et al.. Graphene mode-locked ultrafast laser[J]. ACS Nano, 2010, 4(2): 803~810

[58] F. Bonaccorso, Z. Sun, T. Hasan et al.. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9): 611~622

[59] 刘江,吴思达,王科 等. 基于石墨烯可饱和吸收体的被动锁模、被动调Q掺镱光纤激光器[J]. 中国激光, 2011, 38(8): 0802001

    Liu Jiang, Wu Sida, Wang Ke et al.. Passively mode-locked and Q-switched Yb-doped fiber lasers with graphene-based saturable absorber[J]. Chinese J. Lasers, 2011, 38(8): 0802001

[60] 刘江,王璞. 2.0 μm石墨烯被动调Q掺铥全光纤激光器[J]. 中国激光, 2011, 38(10): 1008004-6

[61] J. Liu, J. Xu, P. Wang. Graphene-based passively Q-switched 2 μm thulium-doped fiber laser[J]. Opt. Commun., 2012, 285(24): 5319~5322

[62] A. Chamorovskiy, A. V. Marakulin, S. Ranta et al.. Femtosecond mode-locked holmium fiber laser pumped by semiconductor disk laser[J]. Opt. Lett., 2012, 37(9): 1448~1450

[63] J. F. Li, D. D. Hudson, Y. Liu et al.. Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror[J]. Opt. Lett., 2012, 37(18): 3747~3749

[64] C. Wei, X. Zhu, R. A. Norwood et al.. Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm[J]. Opt. Lett., 2012, 37(18): 3849~3851

王璞, 刘江. 2.0 μm掺铥超短脉冲光纤激光器研究进展及展望[J]. 中国激光, 2013, 40(6): 0601002. Wang Pu, Liu Jiang. Progress and Prospect on Ultrafast Tm-Doped Fiber Lasers at 2 μm Wavelength[J]. Chinese Journal of Lasers, 2013, 40(6): 0601002.

本文已被 16 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!