中国激光, 2013, 40 (6): 0601002, 网络出版: 2013-05-30   

2.0 μm掺铥超短脉冲光纤激光器研究进展及展望 下载: 1304次

Progress and Prospect on Ultrafast Tm-Doped Fiber Lasers at 2 μm Wavelength
作者单位
北京工业大学激光工程研究院国家产学研激光技术中心, 北京 100124
摘要
2.0 μm掺铥脉冲光纤激光器在人眼安全雷达、激光医疗、光电对抗以及特殊材料加工等领域具有重要应用,近年来成为新型光纤激光源研究的热点。对国内外2.0 μm掺铥超短脉冲光纤激光器的研究进展进行了归纳与总结,内容包括: 实现掺铥超短激光脉冲振荡输出的技术手段;新型被动锁模可饱和吸收材料,被动锁模掺铥光纤激光输出的性能及优劣;高功率掺铥超短脉冲光纤放大器的最新研究进展等。技术手段涉及主动锁模、非线性偏振演化锁模、可饱和吸收体锁模和非线性放大环镜锁模。新型可饱和吸收材料主要包括半导体、碳纳米管、石墨烯以及氧化石墨烯等。本课题组最新研究结果表明高功率掺铥超短脉冲光纤放大器的平均输出功率可达80 W,激光脉冲宽度为20 ps,激光中心波长为1963 nm。对此类超短脉冲光纤激光器的进一步发展及应用给予了展望。
Abstract
Thulium-doped pulsed fiber lasers have attracted considerable interests as novel laser source, due to their wide applications in eye-safe lidar, laser medical system, optoelectronic countermeasure and special material processing. The research and development on ultrafast thulium-doped fiber laser at 2 μm wavelength are classified, which include the technical approach of the ultrafast thuliun doped pulse output, the novel saturable absorbers of passive mode-locking, the characteristics of thulium-doped passively mode-locked fiber laser output, and the development of high power thulium-doped ultrafast pulse amplifier. Up to now, several main mode-locked techniques, such as actively mode-locking, nonlinear polarization evolution, saturable absorber, and nonlinear amplifier loop mirror have been used to achieve ultrashort laser pulses in thulium-doped fiber lasers. The saturable absorber material mainly include semiconductor, carbon nanotubes, graphene and graphene oxide. The most recent work shows that 80 W average power at 1963 nm has been obtained in a three-stage fiber amplifier with pulse width of 20 ps. The prospect of further development and application of such ultrafast laser sources is discussed in the last part of the article.
参考文献

[1] M. Eckerle, C. Kieleck, J. widerski et al.. Actively Q-switched and mode-locked Tm3+-doped silicate 2 μm fiber laser for supercontinuum generation in fluoride fiber[J]. Opt. Lett., 2012, 37(4): 512~514

[2] D. Buccoliero, H. Steffensen, O. Bang et al.. Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber[J]. Appl. Phys. Lett., 2010, 97(6): 061106

[3] C. R. Phillips, Carsten Langrock, J. S. Pelc et al.. Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system[J]. Opt. Lett., 2011, 36(19): 3912~3914

[4] O. P. Kulkarni, V. V. Alexander, M. Kumar et al.. Supercontinuum generation from ~1.9 to 4.5 μm in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier[J]. J. Opt. Soc. Am. B, 2011, 28(10): 2486~2498

[5] Y. Tang, C. Huang, S. Wang et al.. High-power narrow-bandwidth thulium fiber laser with an all-fiber cavity[J]. Opt. Express, 2012, 20(16):17539~17544

[6] Z. Yunjun, Y. Baoquan, J. Youlun et al.. LD-cladding-pumped 50 pm linewidth Tm3+-doped silica fiber laser[J]. Opt. Express, 2008, 16(11): 7715~7719

[7] F. Wang, D. Shen, D. Fan et al.. Spectrum narrowing of high power Tmfiber laser using a volume Bragg grating[J]. Opt. Express, 2010, 18(9): 8937~8941

[8] S. D. Jackson, Terence A. King. High-power diode-cladding-pumped Tm-doped silica fiber laser[J]. Opt. Lett., 2008, 23(18): 1462~1464

[9] P. F. Moulton, G. A. Rines, E. Slobodtchikov et al.. Tm-doped fiber lasers: fundamentals and power scaling[J]. IEEE J. Sel. Top. Quantum Electron., 2009, 15(1): 85~92

[10] Thomas Ehrenreich, Ryan Leveille, Imtiaz Majid et al.. 1-kW, all-glass Tm fiber laser[C]. SPIE, 2010, 7580: 16

[11] 刘江,王璞. 高功率窄线宽全光纤结构掺铥连续光纤激光器[J]. 中国激光, 2013, 40(1): 0102001

    Liu Jiang,Wang Pu. High-power narrow-bandwidth continuous wave thulium-doped all-fiber laser[J]. Chinese J. Lasers, 2013, 40(1): 0102001

[12] G. D. Goodno, L. D. Book, J. E. Rothenberg. Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier[J]. Opt. Lett., 2009, 34(8): 1204~1206

[13] P. Hübner, C. Kieleck, Stuart D. Jackson et al.. High-power actively mode-locked sub-nanosecond Tm3+-doped silica fiber laser[J]. Opt. Lett., 2011, 36(13): 2483~2485

[14] L. E. Nelson, E. P. Ippen, H. A. Haus. Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser[J]. Appl. Phys. Lett., 1995, 67(1): 19~21

[15] W. Renard, G. Canat, P. Bourdon. 26 nJ picosecond solitons from thulium-doped single-mode master oscillator power fiber amplifier[J]. Opt. Lett., 2012, 37(3): 377~379

[16] M. Engelbrecht, F. Haxsen, A. Ruehl et al.. Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3 nJ[J]. Opt. Lett., 2008, 33(7): 690~692

[17] F. Haxsen, A. Ruehl, M. Engelbrecht et al.. Stretched-pulse operation of a thulium-doped fiber laser[J]. Opt. Express, 2008, 16(25): 20471~20476

[18] F. Haxsen, D. Wandt, U. Morgner et al.. Pulse characteristics of a passively mode-locked thulium fiber laser with positive and negative cavity dispersion[J]. Opt. Express, 2010, 18(18): 18981~18988

[19] F. Haxsen, D. Wandt, U. Morgner et al.. Pulse energy of 151 nJ from ultrafast thulium-doped chirped-pulse fiber amplifier[J]. Opt. Lett., 2010, 35(17): 2991~2993

[20] F. Haxsen, D. Wandt, U. Morgner et al.. Monotonically chirped pulse evolution in an ultrashort pulse thulium-doped fiber laser[J]. Opt. Lett., 2012, 37(6): 1014~1016

[21] A. Wienke, F. Haxsen, D. Wandt et al.. Ultrafast, stretched-pulse thulium-doped fiber laser with a fiber-based dispersion management[J]. Opt. Lett., 2012, 37(13): 2466~2468

[22] Q. Wang, T. Chen, B. Zhang et al.. All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes[J]. Opt. Lett., 2011, 36(19): 3750~3752

[23] Q. Wang, J. Geng, T. Luo et al.. Mode-locked 2 μm laser with highly thulium-doped silicate fiber[J]. Opt. Lett., 2009, 34(23): 3616~3618

[24] Q. Wang, J. Geng, Z. Jiang et al.. Mode-locked Tm-Ho-codoped fiber laser at 2.06 μm[J]. IEEE Photon. Technol. Lett., 2011, 23(11): 682~684

[25] S. Kivist, T. Hakulinen, M. Guina et al.. Tunable Raman soliton source using mode-locked Tm-Ho fiber laser[J]. IEEE Photon. Technol. Lett., 2007, 19(12): 934~936

[26] S. Kivisto, O.G. Okhotnikov. 600-fs mode-locked Tm-Ho-doped fiber laser synchronized to optical clock with optically driven semiconductor saturable absorber[J]. IEEE Photon. Technol. Lett., 2011, 23(8): 477~479

[27] R. Gumenyuk, I. Vartiainen, H. Tuovinen et al.. Dissipative dispersion-managed soliton 2 μm thulium/holmium fiber laser[J]. Opt. Lett., 2011, 36(5): 609~611

[28] R. Gumenyuk, M. S. Gaponenko, K. V. Yumashev et al.. Vector soliton bunching in thulium-holmium fiber laser mode locked with PbS quantum-dot-doped glass absorber[J]. IEEE J. Quantum Electron., 2012, 48(7): 903~907

[29] 刘江,曹镱,王璞. 全光纤结构被动锁模2 μm掺铥光纤激光器[J]. 中国激光,2011, 38(9): 0905007-7

[30] 刘江,王璞. 高功率被动锁模2.0 μm掺铥飞秒脉冲光纤激光器[J]. 中国激光, 2012, 39(9): 0902001

    Liu Jiang, Wang Pu. High-power passively mode-locked thulium-doped femtosecond fiber laser at 2.0 μm[J]. Chinese J. Lasers, 2012, 39(9): 0902001

[31] J. Liu, P. Wang. High-energy near transform-limited pulses from an ultrafast thulium-doped all-fiber MOPA[J]. IEEE Photon. Technol. Lett., 2012, 24(16): 1384~1386

[32] 刘江,徐佳,王潜 等. 高能量全光纤结构被动锁模2.0 μm掺铥超短脉冲光纤激光器[J]. 中国激光, 2012, 39(6): 0602009

    Liu Jiang, Xu Jia, Wang Qian et al.. High-pulse-energy passively mode-locked 2.0 μm thulium-doped ultrafast all-fiber laser[J]. Chinese J. Lasers, 2012, 39(6): 0602009

[33] 刘江,王璞. 瓦级输出全光纤结构2.0 μm掺铥皮秒脉冲光纤激光器[J]. 中国激光, 2012, 39(8): 0802004

    Liu Jiang, Wang Pu. 2 μm thulium-doped ultrafast all-fiber laser with watts-level average output power[J]. Chinese J. Lasers, 2012, 39(8): 0802004

[34] 刘江,王潜,王璞. 20 W全光纤结构掺铥皮秒脉冲光纤激光器[J]. 中国激光, 2012, 39(6): 0610001-5

[35] M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach et al.. Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber[J]. Opt. Lett., 2008, 33(12): 1336~1338

[36] K. Kieu, F. W. Wise. Soliton thulium-doped fiber laser with carbon nanotube saturable absorber[J]. IEEE Photon. Technol. Lett., 2009, 21(3): 128~130

[37] S. Kivist, T. Hakulinen, A. Kaskela et al.. Carbon nanotube films for ultrafast broadband technology[J]. Opt. Express, 2009, 17(4): 2358~2363

[38] Q. Fang, K, Kieu, N. Peyghambarian. An all-fiber 2 μm wavelength-tunable mode-locked laser[J]. Photon. Technol. Lett., 2010, 22(15): 1656~1658

[39] M. Zhang, E. J. R. Kelleher, F. Torrisi et al.. Tm-doped fiber laser mode-locked by graphene-polymer composite[J]. Opt. Express, 2012, 20(22): 25077~25084

[40] D. I. M. Zen, N. Saidin, S. S. A. Damanhuri et al.. Mode-locked thulium-bismuth codoped fiber laser using graphene saturable absorber in ring cavity[J]. Appl. Opt., 2013, 52(6): 1226~1229

[41] 刘江, 吴思达,徐佳 等. 基于氧化石墨烯锁模的2 μm掺铥超短脉冲光纤激光器[J]. 中国激光, 2012, 39(3): 0310001-7

[42] J. Liu, S. Wu, J. Xu et al.. Mode-locked 2 μm thulium-doped fiber laser with graphene oxide saturable absorber[C]. CLEO: QELS-Fundamental Science, 2012. JW2A. 76.

[43] M. Jung, J. Koo, P. Debnath et al.. A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field[J]. Appl. Phys. Express, 2012, 5: 112702~112704

[44] M. A. Chernysheva, A. A. Krylov, P. G. Kryukov et al.. Nonlinear amplifying loop-mirror-based mode-locked thulium-doped fiber laser[J]. IEEE Photon. Technol. Lett., 2012, 24(14): 1254~1256

[45] M. A. Chernysheva, A. A. Krylov, P. G. Kryukov et al.. Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber[J]. Opt. Express, 2012, 20(26), B124~B130

[46] C. Rudy, M. Digonnet, R. Byer et al.. Thulium-doped germanosilicate mode-locked fiber lasers[C]. Fiber Laser Applications, 2012. FTh4A.4

[47] J. Liu, Q. Wang, P. Wang. High average power picosecond pulse generation from a thulium-doped all-fiber MOPA system[J]. Opt. Express, 2012, 20(20): 22442~22447

[48] R. A. Sims, P. Kadwani, A. S. L. Shah et al.. 1 μJ, sub-500 fs chirped pulse amplification in a Tm-doped fiber system[J]. Opt. Lett., 2013, 38(2): 121~123

[49] L. M. Yang, P. Wan, V. Protopopov et al.. 2 μm femtosecond fiber laser at low repetition rate and high pulse energy[J]. Opt. Express, 2012, 20(5): 5683~5688

[50] P. Wan, L. M. Yang, J. Liu. High pulse energy 2 μm femtosecond fiber laser[J]. Opt. Express, 2013, 21(2): 1798~1803

[51] P. Wan, L. M. Yang, J. Liu. 156 micro-J ultrafast thulium-doped fiber laser[C]. SPIE, 2013, 8601: 860138

[52] J. Jiang, C. Mohr, J. Bethge et al.. 500 MHz, 58 fs highly coherent Tm fiber soliton laser[C]. CLEO: Applications and Technology, 2012. CTh5D.7

[53] 刘江,王璞. 850 MHz高重复频率、窄线宽被动锁模皮秒脉冲光纤激光器[J]. 中国激光, 2011, 38(9): 0908009-6

[54] J. Liu, J. Xu, P. Wang. High repetition-rate narrow bandwidth SESAM mode-locked Yb-doped fiber lasers[J]. IEEE Photon. Technol. Lett., 2012, 24(7): 539~541

[55] Q. L. Bao, H. Zhang, Y. Wang et al.. Atomic layer graphene as saturable absorber for ultrafast pulsed laser[J]. Advanced Functional Materials, 2009, 19(19): 3077~3083

[56] H. Zhang, D. Y. Tang, Z. M. Zhao et al.. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene[J]. Opt. Express, 2009, 17(20): 17630~17635

[57] Z. Sun, T. Hasan, F. Bonaccorso et al.. Graphene mode-locked ultrafast laser[J]. ACS Nano, 2010, 4(2): 803~810

[58] F. Bonaccorso, Z. Sun, T. Hasan et al.. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9): 611~622

[59] 刘江,吴思达,王科 等. 基于石墨烯可饱和吸收体的被动锁模、被动调Q掺镱光纤激光器[J]. 中国激光, 2011, 38(8): 0802001

    Liu Jiang, Wu Sida, Wang Ke et al.. Passively mode-locked and Q-switched Yb-doped fiber lasers with graphene-based saturable absorber[J]. Chinese J. Lasers, 2011, 38(8): 0802001

[60] 刘江,王璞. 2.0 μm石墨烯被动调Q掺铥全光纤激光器[J]. 中国激光, 2011, 38(10): 1008004-6

[61] J. Liu, J. Xu, P. Wang. Graphene-based passively Q-switched 2 μm thulium-doped fiber laser[J]. Opt. Commun., 2012, 285(24): 5319~5322

[62] A. Chamorovskiy, A. V. Marakulin, S. Ranta et al.. Femtosecond mode-locked holmium fiber laser pumped by semiconductor disk laser[J]. Opt. Lett., 2012, 37(9): 1448~1450

[63] J. F. Li, D. D. Hudson, Y. Liu et al.. Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror[J]. Opt. Lett., 2012, 37(18): 3747~3749

[64] C. Wei, X. Zhu, R. A. Norwood et al.. Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm[J]. Opt. Lett., 2012, 37(18): 3849~3851

王璞, 刘江. 2.0 μm掺铥超短脉冲光纤激光器研究进展及展望[J]. 中国激光, 2013, 40(6): 0601002. Wang Pu, Liu Jiang. Progress and Prospect on Ultrafast Tm-Doped Fiber Lasers at 2 μm Wavelength[J]. Chinese Journal of Lasers, 2013, 40(6): 0601002.

本文已被 16 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!