激光与光电子学进展, 2018, 55 (8): 080603, 网络出版: 2018-08-13   

基于大偏置量熔接的反射式光纤型干涉仪的折射率传感特性 下载: 788次

Refractive Index Sensing Characteristics of Reflective Fiber Interferometer Based on Large Offset Splicing
作者单位
暨南大学光子技术研究院广东省光纤传感与通信技术重点实验室, 广东 广州 510632
摘要
提出并实现了一种基于大偏置量熔接的单端反射式光纤Mach-Zehnder(M-Z)干涉仪。在一段数百微米长的单模光纤两端以大偏置量对称地错位熔接两段光纤,将其中一段光纤的端面镀制薄金膜作为反射镜面,使在外界环境和光纤包层材料内传输的光产生相位差,并在器件反射端能够观测到较强的干涉光谱。实验发现,该干涉光谱随外界折射率(RI)变化可发生较高灵敏度的漂移,当偏置量为62.5 μm和空腔长度为554 μm时,测得其水环境的折射率灵敏度和空气中的温度灵敏度分别为-13257 nm/RIU(RIU为单位折射率)和37.33 pm/℃。与已报道的同类型器件相比,所提传感器具有折射率灵敏度高、结构紧凑、可单端测量以及稳定性好等优点,在生物化学传感和环境污染监控等领域中具有良好的应用前景。
Abstract
We have demonstrated a kind of single-end reflective optical fiber Mach-Zehnder (M-Z) interferometer based on large lateral-offset splicing joints. Several hundred microns of standard single-mode fiber (SMF) was spliced between two other SMFs with the same lateral offset. One fiber has its end-face coated by gold film, acting as a reflector. The beams propagating in the environmental medium and the fiber cladding material interfere and produce a phase difference. The reflected interference spectra were measured at the same side of the broadband source by an optical spectrum analyzer. The pattern of interference spectrum shifts with the change of the external refractive index (RI). The sensor with a cavity length of 554 μm and a lateral offset of 62.5 μm is demonstrated. The achieved RI sensitivity in water and the temperature coefficient in air are -13257 nm/RIU and 37.33 pm/℃, respectively. Compared with the reported counterparts, the sensor has the advantages of high refractive index sensitivity, compact structure, single-ended measurement and good stability, and has good application prospects in the fields of biochemical sensing and environmental pollution monitoring.
参考文献

[1] Liang W, Huang Y Y, Xu Y, et al. Highly sensitive fiber Bragg grating refractive index sensors[J]. Applied Physics Letters, 2005, 86(15): 151122.

[2] Li J, Wang H, Sun L P, et al. Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing[J]. Optics Express, 2014, 22(26): 31917-31923.

[3] Chong J H, Shum P,Haryono H, et al. Measurements of refractive index sensitivity using long-period grating refractometer[J]. Optics Communications, 2004, 229(1): 65-69.

[4] Fan P C, Sun L P, Yu Z P, et al. Higher-order diffraction of long-period microfiber gratings realized by arc discharge method[J]. Optics Express, 2016, 24(22): 25380-25388.

[5] Cai Z Y, Liu F, Guo T, et al. Evanescently coupled optical fiber refractometer based a tilted fiber Bragg grating and a D-shaped fiber[J]. Optics Express, 2015, 23(16): 20971-20976.

[6] 黄梦, 顾昌晟, 孙兵, 等. 基于石墨烯涂覆倾斜光纤光栅的折射率传感[J]. 中国激光, 2017, 44(12): 1210001.

    Huang M, Gu C S, Sun B, et al. Refractive index sensor based on tilted-fiber Bragg grating coated with graphene[J]. Chinese Journal of Lasers, 2017, 44(12): 1210001.

[7] Ji W B, Liu H H, Tjin S C, et al. Ultrahigh sensitivity refractive index sensor based on optical microfiber[J]. IEEE Photonics Technology Letters, 2012, 24(20): 1872-1874.

[8] Wo J H, Wang G H, Cui Y, et al. Refractive index sensor using microfiber-based Mach-Zehnder interferometer[J]. Optics Letters, 2012, 37(1): 67-69.

[9] Tian Z B, Yam S H, Loock H P. Single-mode fiber refractive index sensor based on core-offset attenuators[J]. IEEE Photonics Technology Letters, 2008, 20(16): 1387-1389.

[10] 王旗, 邹辉, 韦玮. 基于偏芯熔接光纤的应力与折射率传感器[J]. 光学学报, 2017, 37(10): 1006005.

    Wang Q, Zou H, Wei W. Strain and refractive index sensor based on core offset splicing fibers[J]. Acta Optica Sinica, 2017, 37(10): 1006005.

[11] Shao M, Qiao X G, Fu H W, et al. Refractive index sensing of SMS fiber structure based Mach-Zehnder interferometer[J]. IEEE Photonics Technology Letters, 2014, 26(5): 437-439.

[12] 曹晔, 刘文, 赵舜, 等. 基于光子晶体光纤和单模光纤错芯结构的光纤传感器[J]. 光电子·激光, 2015, 26(7): 1233-1237.

    Cao Y, Liu W, Zhao S, et al. A fiber sensor based on the core-offset structure of PCF to SMF[J]. Journal of Optoelectronics·Laser, 2015, 26(7): 1233-1237.

[13] Zhao Y, Li X G, Cai L. A highly sensitive Mach-Zehnder interferometric refractive index sensor based on core-offset single mode fiber[J]. Sensors and Actuators A: Physical, 2015, 223: 119-124.

[14] Gao S C, Zhang W G, Zhang H, et al. Reconfigurable and ultra-sensitive in-line Mach-Zehnder interferometer based on the fusion of microfiber and microfluid[J]. Applied Physics Letters, 2015, 106(8): 084103.

[15] Wang Y, Yang M W, Wang D N, et al. Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity[J]. Journal of the Optical Society of America B, 2010, 27(3): 370-374.

[16] Duan D W, Rao Y J, Xu L C, et al. In-fiber Mach-Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity[J]. Sensors and Actuators B: Chemical, 2011, 160(1): 1198-1202.

[17] Baharin N F, Azmi A I, Abdullah A S, et al. Refractive index sensor based on lateral-offset of coreless silica interferometer[J]. Optics and Laser Technology, 2018, 99: 396-401.

[18] 杨珅, 荣强周, 孙浩, 等. 基于Michelson干涉仪的高灵敏度光纤高温探针传感器[J]. 物理学报, 2013, 62(8): 084218.

    Yang S, Rong Q Z, Sun H, et al. High temperature probe sensor with high sensitivity based on Michelson interferometer[J]. Acta Physica Sinica, 2013, 62(8): 084218.

[19] Dong B, Hao E J. Temperature-insensitive and intensity-modulated embedded photonic-crystal-fiber modal-interferometer-based microdisplacement sensor[J]. Journal of the Optical Society of America B, 2011, 28(10): 2332-2336.

[20] 白泽生, 刘竹琴, 徐红. 几种液体的折射率与其浓度关系的经验公式[J]. 延安大学学报(自然科学版), 2004, 23(1): 33-34.

    Bai Z S, Liu Z Q, Xu H. An experienced formula about the connection of refraction index and consistence of several liquid[J]. Journal of Yanan University (Natural Science Edition), 2004, 23(1): 33-34.

[21] Yao Q Q, Meng H Y, Wang W, et al. Simultaneous measurement of refractive index and temperature based on a core-offset Mach-Zehnder interferometer combined with a fiber Bragg grating[J]. Sensors and Actuators A: Physical, 2014, 209(1): 73-77.

[22] Fan J L, Zhang J S, Lu P, et al. A single-mode fiber sensor based on core-offset inter-modal interferometer[J]. Optics Communications, 2014, 320: 33-37.

苏达顺, 马宽明, 孙立朋, 武创, 李杰, 关柏鸥. 基于大偏置量熔接的反射式光纤型干涉仪的折射率传感特性[J]. 激光与光电子学进展, 2018, 55(8): 080603. Su Dashun, Ma Kuanming, Sun Lipeng, Wu Chuang, Li Jie, Guan Bai′ou. Refractive Index Sensing Characteristics of Reflective Fiber Interferometer Based on Large Offset Splicing[J]. Laser & Optoelectronics Progress, 2018, 55(8): 080603.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!